The Algebra of Formal Series III: Several Variables

Steven Roman
Department of Mathematics, University of California, Santa Barbara, California 93106*
Communicated by Oved Shisha

Received February 10, 1978

1. Introduction

It is the purpose of this paper to begin the development of the algebra of formal series in several variables. From the point of view of the present theory, the natural objects of study are not single series in n variables, but rather n-sets of series $\left(f_{1}, \ldots, f_{n}\right)$.

Let us take the variables to be t_{1}, \ldots, t_{n}. Then the counterpart of a delta series in one variable [that is, a series of the form $a_{1} t+a_{2} t^{2}+\cdots$ with $\left.a_{1} \neq 0\right]$ is a delta set $\left(f_{1}, \ldots, f_{n}\right)$, where f_{j} is of the form

$$
f_{j}=a_{j, 1} t_{1}+\cdots+a_{j, n} t_{n}+g_{j}
$$

with g_{j} being a power series whose terms are of degree at least two (or else $g_{j}=0$) and where ($a_{j, i}$) is a nonsingular matrix of constants. These are precisely the sets of series which possess a compositional inverse. When ($a_{j, i}$) is the identity, we call the set $\left(f_{1}, \ldots, f_{n}\right)$ a diagonal delta set. To each delta set one can associate a sequence of series as in the single-variable case-a sequence which classically would be termed a sequence of "binomial type" in several variables.

For diagonal delta sets, we are able to generalize all the theory of the single-variable case. Thus we are able to study for the first time sequences of infinite series in several variables with both positive and negative exponents.

However, in the nondiagonal case, some serious difficulties arise in connection with negative exponents. It becomes somewhat of a problem even to define $\left(a_{j, 1} t_{1}+\cdots+a_{j, n} t_{n}\right)^{-1}$ in such a way that composition of series retains needed algebraic properties. Nevertheless, we have reason to believe that these difficulties are not insurmountable, and we feel close to a conclusion one way or the other about the existence and usefulness of sequences of series involving negative exponents. In the present paper

[^0]we restrict our attention to nonnegative exponents for the nondiagonal case. In this setting the theory generalizes completely.

We have decided to postpone a detailed study of examples and applications of the present theory to a forthcoming paper. However, regretting somewhat the total absence of examples in our paper on the single-variable case, we have elected to give a few examples here, such as a multivariate version of the Abel and Laguerre polynomials.

One reason for the postponement of a discussion of examples is that in any single-variable case there may be many possible generalizations to several variables, and without specific motivation it is hard to know which way to proceed. Thus it seems pointless to pick arbitrary generalizations and compute examples for example sake.

In this paper we have merely scratched the surface of the vastly complicated theory of formal series in several variables. Not only do immediate questions remain concerning the present work, but many new directions present themselves. For example, we have not touched upon the combinatorial significance of any of the present results. Other directions include the study of the calculus of residues in several variables and a generalization to local rings. We hope in time to touch upon all of these.

2. The Algebras

Let K be a field of characteristic zero. Let Γ denote the vector space of all formal series in the variables t_{1}, \ldots, t_{n} of the form

$$
f=\sum_{u=m}^{\infty} \sum_{i_{1}+\cdots+i_{n}=u}^{*} a_{i_{1}, \ldots, i_{n}} t^{i_{1}} \cdots t^{i_{n}}
$$

where $a_{i_{1}, \ldots, i_{n}} \in K, m$ is any integer, and where the asterisk indicates that the sum is a finite one. Under ordinary multiplication of formal series, Γ is an algebra.

The degree of $f \in \Gamma$ is the smallest integer m such that $a_{i_{1}} \ldots, i_{n} \neq 0$ for some i_{1}, \ldots, i_{n} with $i_{1}+\cdots+i_{n}=m$. Notice that if $f, g \in \Gamma$, then $\operatorname{deg} f g=$ $\operatorname{deg} f+\operatorname{deg} g$.

We let P be the algebra of all formal series in the variables x_{1}, \ldots, x_{n} of the form

$$
p=\sum_{v=-\infty}^{k} \sum_{j_{1}+\cdots+j_{n}=v}^{*} b_{j_{1}, \ldots, j_{n}} x_{1}^{j_{1}} \cdots x_{n}^{j_{n}}
$$

where $b_{j_{1}, \ldots, j_{n}} \in K, k$ is any integer, and the inner sum is a finite one. The degree of p is the largest integer k such that $b_{j_{1}, \ldots, j_{n}} \neq 0$ for some j_{1}, \ldots, j_{n} with $j_{1}+\cdots+j_{n}=k$. For $p, q \in P$, we have $\operatorname{deg} p q=\operatorname{deg} p+\operatorname{deg} q$.

We put a topology on Γ by specifying that a sequence f_{k} in Γ converges to $f \in \Gamma$ if for any integer u_{0} there exists an integer k_{0} such that if $k \geqslant k_{0}$ then the coefficient of $t_{1}^{i_{1}} \cdots t_{n}^{i_{n}}$ in f_{k} equals the coefficient of $t_{1}^{i_{1} \cdots t_{n}^{i_{n}} \text { in } f}$ for all i_{1}, \ldots, i_{n} with $i_{1}+\cdots+i_{n} \leqslant u_{0}$. We put a similar topology on P. Namely, a sequence p_{k} in P converges to $p \in P$ if for any integer u_{0} there exists an integer k_{0} such that if $k \geqslant k_{0}$ then the coefficient of $t_{1}^{i_{1}} \cdots t_{n}^{i_{n}}$ in p_{k} equals the same coefficient in p for all $i_{1}+\cdots+i_{n} \geqslant u_{0}$. Both Γ and P are topological algebras.

3. Diagonal Delta Sets

The set $\left(f_{1}, \ldots, f_{n}\right)$ is a diagonal delta set if

$$
f_{i}=t_{i}+g_{i}
$$

for $i=1, \ldots, n$, where $g_{i}=0$ or else g_{i} is a power series (that is, has no negative exponents) of degree at least two. Any element f_{i} of a delta set has a multiplicative inverse in Γ. For $g_{i}=0$, this is clear. For $g_{i} \neq 0$ consider the series

$$
\sum_{k \geqslant 0}(-1)^{k} t_{i}^{-1-k} g_{i}{ }^{k} .
$$

Since $\operatorname{deg} g_{i} \geqslant 2$, this series converges in Γ, and is therefore the multiplicative inverse of f_{i}.

If $f=\sum_{u=m}^{\infty} \sum_{i_{1}+\ldots+i_{n}=u}^{*} a_{i_{1} \ldots \ldots, i_{n}} t_{1}^{i_{1} \cdots} t_{n}^{i_{n}}$ and if $g_{1}, \ldots, g_{n} \in \Gamma$ we define the composition of f with g_{1}, \ldots, g_{n} as the series

$$
f\left(g_{1}, \ldots, g_{n}\right)=\sum_{u=m}^{\infty} \sum_{i_{1}+\cdots+i_{n}=u}^{*} a_{i_{1}, \ldots, i_{n}} g_{1}^{i_{1}} \cdots g_{n}^{i_{n}},
$$

provided the sum converges. If (g_{1}, \ldots, g_{n}) is a diagonal delta set, then $\operatorname{deg} g_{1}^{i_{1}} \cdots g_{n}^{i_{n}}=i_{1}+\cdots+i_{n}$ and so the sum will converge and $f\left(g_{1}, \ldots, g_{n}\right)$ is always defined. Moreover, if (f_{1}, \ldots, f_{n}) and (g_{1}, \ldots, g_{n}) are diagonal delta sets, then $\left(f_{1}\left(g_{1}, \ldots, g_{n}\right), \ldots, f_{n}\left(g_{1}, \ldots, g_{n}\right)\right)$ is a diagonal delta set. It is well known that any diagonal delta set has a compositional inverse, that is, a diagonal delta set $\left(\overline{f_{1}}, \ldots, \overline{f_{n}}\right)$ for which

$$
f_{i}\left(\overline{f_{1}}, \ldots, \overline{f_{n}}\right)=t_{i}=\overline{f_{i}}\left(f_{1}, \ldots, f_{n}\right)
$$

for all $i=1, \ldots, n$.
We say that the set $p_{i_{1}} \ldots, i_{n}$ in P, where i_{1}, \ldots, i_{n} range over all integers,
is a strong sequence if any $q \in P$ has a unique representation as a convergent sum

$$
q=\sum_{u=-\infty}^{k} \sum_{i_{1}+\cdots+i_{n}=u}^{*} a_{i_{1}, \ldots, i_{n}} p_{i_{1}, \ldots, i_{n}}
$$

4. An Action of Γ on P

We define an action of Γ on P. Let c_{i} be a sequence of nonzero elements of K for all integers i, and suppose $c_{0}=1$. We denote the action of $f \in \Gamma$ on $p \in P$ by

$$
\langle f \mid p\rangle
$$

and set

$$
\left\langle t_{1}^{i_{1}} \cdots t_{n}^{i_{n}} \mid x_{1}^{j_{1}} \cdots x_{n}^{j_{n}}\right\rangle=c_{i_{1}} \cdots c_{i_{n}} \delta_{i_{1}, j_{1}} \cdots \delta_{i_{n}, j_{n}}
$$

where $\delta_{i, j}$ is the Kronecker delta. The action is extended to all $f \in \Gamma$ and $p \in P$. Thus if

$$
f=\sum_{u=m}^{\infty} \sum_{i_{1}+\cdots+i_{n}=u}^{*} a_{i_{1}, \ldots, i_{n}} t_{1}^{i_{1}} \cdots t_{n}^{i_{n}}
$$

and

$$
p=\sum_{v=-\infty}^{k} \sum_{j_{1}+\cdots+j_{n}=v} b_{j_{1}, \ldots, j_{n}} x_{1}^{j_{1}} \cdots x_{n}^{j_{n}}
$$

we have

$$
\langle f \mid p\rangle=\sum_{u=m}^{k} \sum_{i_{1}+\cdots+i_{n}=u}^{*} a_{i_{1}, \ldots, i_{n}} b_{i_{1}, \ldots, i_{n}} c_{i_{1}} \cdots c_{i_{n}}
$$

It is clear that $\langle f \mid p\rangle=0$ if $\operatorname{deg} f>\operatorname{deg} p$.
Since $\left\langle f \mid x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle=a_{i_{1} \ldots i_{n}} c_{i_{1}} \cdots c_{i_{n}}$ we have

$$
f=\sum_{u-m}^{\infty} \sum_{i_{1}+\cdots+i_{n}=u}^{*} \frac{\left\langle f \mid x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle}{c_{i_{1}} \cdots c_{i_{n}}} t_{1}^{i_{1}} \cdots t_{n}^{i_{n}} .
$$

Also,

$$
p=\sum_{v=-\infty}^{k} \sum_{j_{1}+\cdots+j_{n}=v}^{*} \frac{\left\langle t_{1}^{j_{1}} \cdots t_{n}^{j_{n}} \mid p\right\rangle}{c_{j_{1}} \cdots c_{j_{n}}} x_{1}^{j_{1}} \cdots x_{n}^{j_{n}}
$$

From this it is clear that if $\langle f \mid p\rangle=0$ for all $p \in P$, then $f=0$ and if
$\langle f \mid p\rangle=0$ for all $f \in \Gamma$, then $p=0$. We call this the spanning argument.
It is easy to verify
Proposition 1. If $f, g \in \Gamma$, then

$$
\begin{aligned}
\left\langle f g \mid x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle= & \sum_{u=m}^{i_{1}+\cdots+i_{n}-k} \sum_{j_{1}+\cdots+j_{n}=u}^{*} \frac{c_{i_{1}} \cdots c_{i_{n}}}{c_{j_{1}} \cdots c_{j_{n}} c_{i_{1}-j_{1}} \cdots c_{i_{n}-j_{n}}} \\
& \times\left\langle f \mid x_{1}^{j_{1}} \cdots x_{n}^{j_{n}}\right\rangle\left\langle g \mid x_{1}^{i_{1}-j_{1}} \cdots x_{n}^{i_{n}-j_{n}}\right\rangle,
\end{aligned}
$$

where $m=\operatorname{deg} f$ and $k=\operatorname{deg} g$.
An induction argument gives

Proposition 2. If $f_{1}, \ldots, f_{m} \in \Gamma$, then

5. Associated Sequences

A strong sequence $p_{i_{1}, \ldots, i_{n}}$ is called the associated sequence for the diagonal delta set $\left(f_{1}, \ldots, f_{n}\right)$ if it satisfies

$$
\left\langle f_{1}^{j_{1}} \cdots f_{n}^{j_{n}} \mid p_{i_{1} \ldots \ldots i_{n}}\right\rangle=c_{i_{1}} \cdots c_{i_{n}} \delta_{i_{1}, j_{1}} \cdots \delta_{i_{n}, j_{n}}
$$

for all integers j_{1}, \ldots, j_{n} and i_{1}, \ldots, i_{n}.
Theorem 1. Every diagonal delta set has a unique associated sequence.
Proof. For the uniqueness, if $p_{i_{1}, \ldots, i_{n}}$ and $q_{i_{1}, \ldots, i_{n}}$ are both associated sequences then

$$
t_{1}^{k_{1}} \cdots t_{n}^{k_{n}}=\sum_{u=m}^{\infty} \sum_{i_{1}+\cdots+i_{n}=u}^{*} \frac{\left\langle t_{1}^{k_{1}} \cdots t_{n}^{k_{n}} \mid p_{i_{1} \ldots \ldots i_{n}}\right\rangle}{c_{i_{1}} \cdots c_{i_{n}}} f_{1}^{i_{1}} \cdots f_{n}^{i_{n}}
$$

This follows from the fact that the right-hand sum converges, applying
both sides to $p_{i_{1}} \ldots \ldots, j_{n}$ gives equality, and that $p_{j_{1} \ldots, j_{n}}$ is a strong sequence and therefore spans P. Thus

$$
\begin{aligned}
\left\langle t_{1}^{k_{1}} \cdots\right. & t_{n}^{k_{n}}\left|p_{i_{1} \ldots . j_{n}}\right\rangle \\
& =\sum_{u=m}^{\infty} \sum_{i_{1}+\cdots+i_{n}=u}^{*} \frac{\left\langle t_{1}^{k_{1}} \cdots t_{n}^{k_{n}} \mid p_{i_{1}, \ldots, i_{n}}\right\rangle}{c_{i_{1}} \cdots c_{i_{n}}}\left\langle f_{1}^{i_{1} \cdots} f_{n}^{i_{n}} \mid p_{j_{1}, \ldots, j_{n}}\right\rangle \\
& =\sum_{u=m}^{\infty} \sum_{i_{1}+\cdots+i_{n}=u}^{*} \frac{\left\langle t_{1}^{k_{1}} \cdots t_{n}^{k_{n}} \mid p_{i_{1}, \ldots, i_{n}}\right\rangle}{c_{i_{1}} \cdots c_{i_{n}}}\left\langle f_{1}^{i_{1} \cdots f_{n}^{i_{n}}\left|q_{j_{1}, \ldots, j_{n}}\right\rangle}\right. \\
& =\left\langle t_{1}^{k_{1} \cdots t_{n}^{n_{n}}\left|q_{j_{1}, \ldots . j_{n}}\right\rangle}\right.
\end{aligned}
$$

and so $p_{j_{1}, \ldots, j_{n}}=q_{j_{1}, \ldots, j_{n}}$.
For the existence, the identity

$$
\left\langle t_{1}^{k_{1}} \cdots t_{n}^{k_{n}} \mid p_{i_{1}, \ldots, i_{n}}\right\rangle=\left\langle\bar{f}_{1}^{k_{1}} \cdots \bar{f}_{n}^{k_{n}} \mid x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle
$$

defines a set $p_{i_{1}, \ldots, i_{n}}$ for which $\operatorname{deg} p_{i_{1}, \ldots, i_{n}}=i_{1}+\cdots+i_{n}$ and the only term in $p_{i_{1} \ldots \ldots i_{n}}$ of degree $i_{1}+\cdots+i_{n}$ is a constant multiple of $t_{1}^{i_{1} \cdots t_{n} \text {. }}$ Thus $p_{i_{1}} \ldots, i_{n}$ is a strong sequence in P. Since

$$
f_{1}^{j_{1}} \cdots f_{n}^{j_{n}}=\sum_{u=m}^{\infty} \sum_{k_{1}+\cdots+k_{n}=u}^{*} \frac{\left\langle f_{1}^{j_{1}} \cdots f_{n}^{j_{n}} \mid x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}\right\rangle}{c_{k_{1}} \cdots c_{k_{n}}} t_{1}^{k_{1}} \cdots t_{n}^{k_{n}},
$$

we have

$$
\begin{aligned}
\left\langle f_{1}^{j_{1}} \cdots\right. & f_{n}^{j_{n}}\left|p_{i_{1} \cdots \cdots, i_{n}}\right\rangle \\
& =\sum_{u=m}^{\infty} \sum_{k_{1}+\cdots+k_{n}=u}^{*} \frac{\left\langle f_{1}^{j_{1}} \cdots f_{n}^{j_{n}} \mid x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}\right\rangle}{c_{k_{1}} \cdots c_{k_{n}}}\left\langle t_{1}^{k_{1}} \cdots t_{n}^{k_{n}} \mid p_{i_{1}, \ldots, i_{n}}\right\rangle \\
& =\sum_{u=m}^{\infty} \sum_{k_{1}+\cdots+k_{n}=u}^{*} \frac{\left\langle f_{1}^{j_{1}} \cdots f_{n}^{j_{n}} \mid x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}\right\rangle}{c_{k_{1}} \cdots c_{k_{n}}}\left\langle f_{1}^{k_{1} \cdots} f_{n}^{k_{n}} \mid x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle \\
& =\left\langle t_{1}^{j_{1}} \cdots t_{n}^{j_{n}} \mid x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle \\
& =c_{i_{1}} \cdots c_{i_{n}} \delta_{i_{1}, j_{1}} \cdots \delta_{i_{n}, j_{n}} .
\end{aligned}
$$

Note that if $p_{i_{1} \ldots, i_{n}}$ is an associated sequence, then $\operatorname{deg} p_{i_{1}} \ldots, i_{n}=$ $i_{1}+\cdots+i_{n}$ and so

$$
\sum_{v=-\infty}^{k} \sum_{i_{1}+\cdots+i_{n}=v}^{*} a_{i_{1}, \ldots, i_{n}} p_{i_{1}, \ldots, i_{n}}
$$

will always converge in P.

A convenient device for handling associated sequences is the transfer operator. If $p_{i_{1}, \ldots . i_{n}}$ is an associated sequence the continuous linear operator λ on P defined by

$$
\lambda x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}=p_{i_{1}, \ldots, i_{n}}
$$

is called the transfer operator associated with $p_{i_{1}, \ldots, i_{n}}$. Notice that λ is defined on all of P, and that λ is a bijection.

If μ is any linear operator on P, we define its adjoint μ^{*} as the unique linear operator on Γ defined by

$$
\left\langle\mu^{*} f \mid x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle=\left\langle f \mid \mu x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle
$$

for all $f \in \Gamma$.

Theorem 2. A linear operator λ on P is a transfer operator if and only if its adjoint λ^{*} is a continuous automorphism of Γ which maps delta sets to delta sets.

Proof. It is clear that if λ is a transfer operator, then λ^{*} is linear, one-toone and onto. The proof of Theorem 1 shows that if $\lambda: x_{1}^{i_{1}} \cdots x_{n}^{i_{n}} \rightarrow p_{i_{1} \ldots, i_{n}}$ is the associated sequence for $\left(f_{1}, \ldots, f_{n}\right)$ then

$$
\left\langle t_{1}^{k_{1}} \cdots t_{n}^{k_{n}} \mid p_{i_{1}, \ldots, i_{n}}\right\rangle=\left\langle\bar{f}_{1}^{k_{1}} \cdots \bar{f}_{n}^{k_{n}} \mid x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle
$$

Thus if $g \in \Gamma$ and

$$
g=\sum_{u=m}^{\infty} \sum_{k_{1}+\cdots+k_{n}=u}^{*} a_{k_{1}, \ldots, k_{n}} t_{1}^{k_{1}} \cdots t_{n}^{k_{n}}
$$

we have

$$
\begin{aligned}
\left\langle\lambda^{*} g \mid x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle & =\left\langle g \mid p_{i_{1}, \ldots, i_{n}}\right\rangle \\
& =\sum_{u=m}^{\infty} \sum_{k_{1}+\cdots+k_{n}=u}^{*} a_{k_{1}, \ldots, k_{n}}\left\langle\bar{f}_{1}^{k_{1}} \cdots \bar{f}_{n}^{k_{n}} \mid x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle \\
& =\left\langle g\left(\bar{f}_{1}, \ldots, f_{n}\right) \mid x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle
\end{aligned}
$$

So $\lambda^{*} g=g\left(f_{1}, \ldots, f_{n}\right)$ and λ^{*} is continuous, preserves products, and maps delta sets to delta sets.

For the converse, suppose μ^{*} is a continuous automorphism of Γ which maps delta sets to delta sets. Suppose $\left(f_{1}, \ldots, f_{n}\right)$ is the delta set for which
$\mu^{*} f_{1}^{j_{1}} \cdots f_{n}^{j_{n}}=t_{1}^{j_{1}} \cdots t_{n}^{j_{n}}$. Then if $p_{i_{1}, \ldots, i_{n}}$ is the associated sequence for $\left(f_{1}, \ldots, f_{n}\right)$ and $\lambda: x_{1}^{i_{1}} \cdots x_{n}^{i_{n}} \rightarrow p_{i_{1}, \ldots, i_{n}}$ is a transfer operator, we have

$$
\lambda^{*} f_{1}^{j_{1}} \cdots f_{n}^{j_{n}}=f_{1}^{j_{1}}\left(\bar{f}_{1}, \ldots, \bar{f}_{n}\right) \cdots f_{n}^{j_{n}}\left(f_{1}, \ldots, \bar{f}_{n}\right)=t_{1}^{j_{1}} \cdots t_{n}^{j_{n}}
$$

and so $\lambda^{*}=\mu^{*}$.
The important properties of transfer operators are contained in
COROLLARY 1. (a) If $\lambda: x_{1}^{i_{1}} \cdots x_{n}^{i_{n}} \rightarrow p_{i_{1}, \ldots . i_{n}}$ is a transfer operator, and $p_{i_{1}}, \ldots i_{n}$ is associated to $\left(f_{1}, \ldots, f_{n}\right)$, then if $g \in \Gamma$, we have

$$
\lambda^{*} g=g\left(\bar{f}_{1}, \ldots, \bar{f}_{n}\right) .
$$

In particular,

$$
\lambda^{*} f_{1}^{j_{1}} \cdots f_{n}^{j_{n}}=t_{1}^{j_{1}} \cdots t_{n}^{j_{n}}
$$

(b) A transfer operator maps associated sequences to associated sequences.
(c) If $\lambda: p_{i_{1}, \ldots, i_{n}} \rightarrow q_{i_{1}, \ldots, i_{n}}$ is a linear operator, and $p_{i_{1}, \ldots, i_{n}}$ is associated to $\left(f_{1}, \ldots, f_{n}\right)$, and $q_{i_{1}, \ldots, i_{n}}$ is associated to $\left(g_{1}, \ldots, g_{n}\right)$, then λ^{n} is a transfer operator and

$$
\lambda^{*} g_{1}^{i_{1}} \cdots g_{n}^{i_{n}}=f_{1}^{i_{1}} \cdots f_{n}^{i_{n}} .
$$

Proof. (a) Part (a) is proved in the proof of Theorem 2.
(b) Suppose $\lambda: x_{1}^{i_{1}} \cdots x_{n}^{i_{n}} \rightarrow p_{i_{2}, \ldots, i_{n}}$, and let $q_{i_{1}, \ldots, i_{n}}$ be the associated sequence for $\left(g_{1}, \ldots, g_{n}\right)$. Then $\left\langle\left(\lambda^{-1}\right)^{*} g_{1}^{j_{1}} \cdots g_{n}^{j_{n}} \mid \lambda q_{i_{1}, \ldots, i_{n}}\right\rangle=\left\langle g_{1}^{j_{1}} \cdots g_{n}^{j_{n}}\right|$ $\left.q_{i_{1}, \ldots, i_{n}}\right\rangle=c_{i_{1}} \cdots c_{i_{n}} \delta_{i_{1}, j_{1}} \cdots \delta_{i_{n}, j_{n}}$ and so $\lambda q_{i_{1}, \ldots, i_{n}}$ is the associated sequence for $\left(\left(\lambda^{-1}\right)^{*} g_{1}, \ldots,\left(\lambda^{-1}\right)^{*} g_{n}\right)$.
(c) We have $\left\langle\lambda^{*} g_{1}^{j_{1}} \cdots g_{n}^{j_{n}} \mid p_{i_{1}, \ldots, i_{n}}\right\rangle=\left\langle g_{1}^{j_{1}} \cdots g_{n}^{j_{n}} \mid q_{i_{1}, \ldots, i_{n}}\right\rangle=$ $\left\langle f_{1}^{j_{1}} \cdots f_{n}^{j_{n}} \mid p_{i_{1}, \ldots, i_{n}}\right\rangle$. Thus $\lambda^{*} g_{1}^{j_{1}} \cdots g_{n}^{j_{n}}=f_{1}^{j_{1}} \cdots f_{n}^{j_{n}}$. This implies that λ^{*} is a continuous automorphism of Γ mapping delta sets to delta sets, and so λ is a transfer operator by Theorem 2 .

Suppose $p_{i_{1}, \ldots, i_{n}}$ and $q_{i_{1}, \ldots, i_{n}}$ are associated sequences and

$$
p_{i_{1}, \ldots, i_{n}}=\sum_{u=-\infty}^{m} \sum_{j_{1}+\cdots+j_{n}=u}^{*} a_{j_{1}, \ldots, j_{n}} x_{1}^{i_{1}} \cdots x_{n}^{j_{n}} .
$$

We define the umbral composition of $p_{i_{2}} \ldots \ldots i_{n}$ with $q_{i_{1}, \ldots, i_{n}}$ as the strong sequence

$$
p_{i_{1}, \ldots, i_{n}}(\mathbf{q})=\sum_{u=-\infty}^{m} \sum_{j_{1}+\cdots+j_{n}=u}^{*} a_{j_{1}, \ldots, j_{n}} q_{j_{1}, \ldots, j_{n}},
$$

which converges in P.

The content of the next theorem is that the map which associates to each diagonal delta set its associated sequence is a group homomorphism from the group of diagonal delta sets under composition to the group of associated sequences under umbral composition.

THEOREM 3. If $\left(f_{1}, \ldots, f_{n}\right)$ has associated sequence $p_{i_{1}, \ldots . i_{n}}$ and $\left(g_{1}, \ldots, g_{n}\right)$ has associated sequence $q_{i_{1}, \ldots, i_{n}}$ then $\left(f_{1}\left(g_{1}, \ldots, g_{n}\right), \ldots, f_{n}\left(g_{1}, \ldots, g_{n}\right)\right)$ has associated sequence $p_{i_{1}, \ldots, i_{n}}(\mathbf{q})$.

Proof. If $\lambda: x_{1}^{i_{1}} \cdots x_{n}^{i_{n} \rightarrow} q_{i_{1}, \ldots, i_{n}}$ is a transfer operator, then $\lambda p_{i_{1}, \ldots, i_{n}}=$ $p_{i_{1}, \ldots, i_{n}}(\mathbf{q})$. Moreover, $\left(\lambda^{-1}\right)^{*} f \stackrel{i_{1}}{=} f\left(g_{1}, \ldots, g_{n}\right)$ and so

$$
\begin{aligned}
& \left\langle f_{1}^{j_{1}}\left(g_{1}, \ldots, g_{n}\right) \cdots f_{n}^{j_{n}}\left(g_{1}, \ldots, g_{n}\right) \mid p_{i_{1}, \ldots, i_{n}}(\mathbf{q})\right\rangle \\
& \quad=\left\langle\left(\lambda^{-1}\right)^{*} f_{1}^{j_{1}} \cdots f_{n}^{j_{n}} \mid \lambda p_{i_{1}, \ldots, i_{n}}\right\rangle \\
& \quad=\left\langle f_{1}^{j_{1}} \cdots f_{n}^{j_{n}} \mid p_{i_{1}, \ldots, i_{n}}\right\rangle \\
& \quad=c_{i_{1}} \cdots c_{i_{n}} \delta_{i_{1}, i_{\mathbf{1}}} \cdots \delta_{i_{n}, i_{n}}
\end{aligned}
$$

and the theorem is proved.
If $\left(f_{1}, \ldots, f_{n}\right)$ is a diagonal delta set, and if $q_{i_{1}, \ldots, i_{n}}$ is the associated sequence for the compositional inverse ($\bar{f}_{1}, \ldots, \bar{f}_{n}$), then

$$
q_{i_{1} \cdots i_{n}}=\sum_{u=-\infty}^{i_{1}+\cdots+i_{n}} \sum_{j_{1}+\cdots+j_{n}=u}^{*} \frac{\left\langle f_{1}^{j_{1}} \cdots f_{n}^{j_{n}}\right| x_{1}^{i_{1}} \cdots x_{n}^{\left.i_{n}\right\rangle}}{c_{j_{1}} \cdots c_{j_{n}}} x_{1}^{j_{1}} \cdots x_{n}^{j_{n}}
$$

We call $q_{i_{1}, \ldots, i_{n}}$ the conjugate sequence for $\left(f_{1}, \ldots, f_{n}\right)$. Thus the conjugate sequence for a diagonal delta set is the associated sequence for its compositional inverse.

Corollary 2. If $p_{i_{1}, \ldots, i_{n}}$ is the associated sequence for $\left(f_{1}, \ldots, f_{n}\right)$ and $q_{i_{1}, \ldots, i_{n}}$ is the conjugate sequence for $\left(f_{1}, \ldots, f_{n}\right)$ then

$$
p_{i_{1}, \ldots, i_{n}}(\mathbf{q})=x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}=q_{i_{1}, \ldots, i_{n}}(\mathbf{p})
$$

One of the key results of this section is
Theorem 4 (Expansion Theorem). Let $\left(f_{1}, \ldots, f_{n}\right)$ be a diagonal delta set with associated sequence $p_{i_{1}} \ldots, i_{n}$. Then if $g \in \Gamma$, we have

$$
g=\sum_{u=m}^{\infty} \sum_{i_{1}+\cdots+i_{n}=u}^{*} \frac{\left\langle g \mid p_{i_{1}, \ldots, i_{n}}\right\rangle}{\mathcal{c}_{i_{1}} \cdots \mathfrak{c}_{i_{n}}} f_{1}^{i_{1}} \cdots f_{n}^{i_{n}}
$$

where $m=\operatorname{deg} g$.

Proof. It is clear that the sum on the right converges, and applying both sides to $p_{j_{1}, \ldots, j_{n}}$ gives equality. Therefore, the spanning argument proves the theorem.

The Expansion Theorem has some very important corollaries, which we examine next.

Suppose u_{1}, \ldots, u_{n} are integers and $a_{1}, \ldots, a_{n} \in K$. The evaluation series $\epsilon_{a_{1}, \ldots, a_{n}}^{u_{1}, \ldots, u_{n}}$ in Γ is defined by

$$
\epsilon_{a_{1}, \ldots, a_{n}}^{u_{1}, \ldots, u_{n}}=\sum_{u=u_{1}+\cdots+u_{n}}^{\infty} \sum_{\substack{j_{1}+\cdots \cdots+j_{n}=u \\ j_{i} \geqslant u_{i}}} \frac{a_{1}^{j_{1}} \cdots a_{n}^{j_{n}}}{c_{j_{1}} \cdots c_{j_{n}}} t_{1}^{j_{1}} \cdots t_{n}^{j_{n}} .
$$

This series has the property that

$$
\begin{array}{rlrl}
\left\langle\epsilon_{a_{1} \ldots, a_{n}}^{u_{1}, \ldots u_{n}} \mid x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle & =0 & & \text { if } \quad \dot{j}_{i}<u_{i} \\
& \text { for any } i, \\
& =a_{1}^{j_{1}} \cdots a_{n}^{j_{n}} & & \text { if } \quad \dot{j}_{i} \geqslant u_{i} \\
\text { for all } i .
\end{array}
$$

Moreover, if $\left\langle\epsilon_{a_{1}, \ldots, a_{n}}^{u_{1}, \ldots, u_{n}} \mid p\right\rangle=0$ for all evaluation series then $p=0$.
Corollary 3. If $p_{j_{1}, \ldots, j_{n}}$ is the associated sequence for $\left(f_{1}, \ldots, f_{n}\right)$ and if $q \in P$, then

$$
q=\sum_{u=-\infty}^{k} \sum_{j_{1}+\cdots+j_{n}-u}^{*} \frac{\left\langle f_{1}^{j_{1}} \cdots f_{n}^{j_{n}} \mid q\right\rangle}{c_{j_{1}} \cdots c_{j_{n}}} p_{j_{1}, \ldots, j_{n}}
$$

where $k=\operatorname{deg} q$.
Proof. From the Expansion Theorem we have

$$
\epsilon_{a_{1}, \ldots, a_{n}}^{u_{1}, \ldots, u_{n}}=\sum_{u=u_{1}+\cdots+u_{n}}^{\infty} \sum_{j_{1}+\cdots+j_{n}=u}^{*} \frac{\left\langle\epsilon_{a_{1}, \ldots, a_{n}}^{u_{1}, \ldots, u_{n}} \mid p_{j_{1}, \ldots, j_{n}}\right\rangle}{c_{j_{1}} \cdots c_{j_{n}}} f_{1}^{j_{1}} \cdots f_{n}^{j_{n}} ;
$$

applying q to both sides gives

$$
\begin{aligned}
\left\langle\epsilon_{a_{1}, \ldots, a_{n}}^{u_{1}, \ldots u_{n}} \mid q\right\rangle & =\sum_{u=u_{1}+\cdots+u_{n}}^{k} \sum_{j_{1}+\cdots+j_{n}=u}^{*} \frac{\left\langle f_{1}^{j_{1}} \cdots f_{n}^{j_{n}} \mid q\right\rangle}{c_{j_{1}} \cdots c_{j_{n}}}\left\langle\epsilon_{a_{1}, \ldots, a_{n}}^{u_{1}, \ldots u_{n}} \mid p_{j_{1} \ldots, j_{n}}\right\rangle \\
& =\left\langle\epsilon_{a_{1}, \ldots, a_{n}}^{u_{1}, \ldots, u_{n}} \left\lvert\, \sum_{u=-\infty}^{k} \sum_{j_{1}+\cdots+j_{n}=u}^{*} \frac{\left\langle f_{1}^{j_{1}} \cdots f_{n}^{j_{n}} \mid q\right\rangle}{c_{j_{1}} \cdots c_{j_{n}}} p_{j_{1}, \ldots, j_{n}}\right.\right\rangle
\end{aligned}
$$

and since u_{1}, \ldots, u_{n} and a_{1}, \ldots, a_{n} are arbitrary the proof is complete.
We may use the Expansion Theorem to extend Proposition 1.
Corollary 4. If $p_{i_{1}, \ldots, i_{n}}$ is an associated sequence and if $f, g \in \Gamma$, then

$$
\begin{aligned}
\left\langle f g \mid p_{i_{1}, \ldots, i_{n}}\right\rangle= & \sum_{u=m}^{i_{1}+\cdots+i_{n}-k} \sum_{j_{1}+\cdots+j_{n}=-}^{*} \frac{c_{i_{1}} \cdots c_{i_{n}}}{c_{j_{1}} \cdots c_{j_{n}} i_{i_{1}-i_{1}} \cdots c_{i_{n}-j_{n}}} \\
& \times\left\langle f \mid p_{j_{1}, \ldots, j_{n}}\right\rangle\left\langle g \mid p_{i_{1}-j_{1}, \ldots, i_{n}-j_{n}}\right\rangle .
\end{aligned}
$$

Corollary 4 has a converse.
Proposition 3. Suppose $p_{i_{1} \ldots, i_{n}}$ is a strong sequence in P with the property that $\operatorname{deg} p_{i_{1}, \ldots, i_{n}}=i_{1}+\cdots+i_{n}$ and the only term in $p_{i_{1}, \ldots, i_{n}}$ of degree $i_{1}+\cdots+i_{n}$ is a constant multiple of $x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}$. If

$$
\begin{aligned}
\left\langle f g \mid p_{i_{1}, \ldots, i_{n}}\right\rangle= & \sum_{u=m}^{i_{1}+\cdots+i_{n}-k} \sum_{i_{1}+\cdots+j_{n}=u}^{*} \frac{c_{i_{1}} \cdots c_{i_{n}}}{c_{j_{1}} \cdots c_{j_{n}} c_{i_{1}-j_{1}} \cdots c_{i_{n}-j_{n}}} \\
& \times\left\langle f \mid p_{j_{1}, \ldots, j_{n}}\right\rangle\left\langle g \mid p_{i_{1}-j_{1}, \ldots, i_{n}-j_{n}}\right\rangle
\end{aligned}
$$

for all f and g in Γ with $m=\operatorname{deg} f$ and $k=\operatorname{deg} g$ then $p_{i_{1}, \ldots, i_{n}}$ is an associated sequence.

Proof. For any $\alpha=1, \ldots, n$ and any integer i_{α} we define the series $f_{\alpha, i_{\alpha}}$ by

$$
\left\langle f_{\alpha, i_{\alpha}} \mid p_{k_{1}, \ldots, k_{n}}\right\rangle=c_{i_{\alpha}} \delta_{i_{\alpha}, k_{\alpha}} \prod_{\beta \neq \alpha} \delta_{0, k_{\beta}} .
$$

We would like first to show that $\left(f_{1.1}, \ldots, f_{n, 1}\right)$ is a diagonal delta set. Now

$$
\left\langle f_{\alpha, 1} \mid p_{k_{1}, \ldots . k}\right\rangle=c_{1} \delta_{1, k_{\alpha}} \sum_{\beta \neq \alpha} \delta_{0, k_{\beta}}
$$

and if $i_{1}+\cdots+i_{n} \leqslant 0$, we can express $x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}$ as an infinite sum of $p_{k_{1}, \ldots, k_{n}}$ which includes only those for which $k_{1}+\cdots+k_{n} \leqslant 0$. Thus $\operatorname{deg} f_{\alpha, 1} \geqslant 1$. Similarly, if $i_{1}+\cdots+i_{n}=1$ we may express $x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}$ in terms of $p_{k_{1}}, \ldots, k_{n}$, where either $k_{1}=i_{1}, \ldots, k_{n}=i_{n}$ or else $k_{1}+\cdots+k_{n}<1$ and so $\left\langle f_{\alpha, 1} \mid x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle=0$ unless $i_{\alpha}=1$ and $i_{\beta}=0$ for all $\beta \neq \alpha$. Thus $\operatorname{deg} f_{\alpha, 1}=1$ and the only term in $f_{\alpha, 1}$ of degree 1 is a constant multiple of t_{α} and so $\left(f_{1,1}, \ldots, f_{n, 1}\right)$ is a diagonal delta set.

Now consider the product $f_{\alpha, l_{\alpha}} f_{\alpha, j_{\alpha}}$. We have

$$
\begin{aligned}
\left\langle f_{\alpha, l_{\alpha}} f_{\alpha, j_{\alpha}} \mid p_{k_{1}, \ldots, k_{n}}\right\rangle= & \sum_{u=l_{\alpha}}^{k_{1}+\cdots+k_{n}-j_{\alpha}} \sum_{i_{1}+\cdots+i_{n}=u}^{*} \frac{c_{k_{1}} \cdots c_{i_{n}}}{c_{i_{1}} \cdots c_{i_{n}} c_{k_{1}-i_{1}} \cdots c_{k_{n}-i_{n}}} \\
& \times\left\langle f_{\alpha, l_{\alpha}} \mid p_{i_{1}, \ldots, i_{n}}\right\rangle f_{\alpha, j_{\alpha}}\left|p_{k_{1}-i_{1} \ldots \ldots, k_{n}-i_{n}}\right\rangle \\
= & c_{l_{\alpha}+j_{\alpha}} \delta_{l_{\alpha}+j_{\alpha}, k_{\alpha}} \prod_{\beta \neq \alpha} \delta_{0, k_{\beta}} \\
= & \left\langle f_{\alpha, l_{\alpha}+j_{\alpha}} \mid p_{k_{1}, \ldots, k_{n}}\right\rangle
\end{aligned}
$$

and the spanning argument implies that $f_{\alpha, l_{\alpha}} f_{\alpha, j_{\alpha}}=f_{\alpha, l_{\alpha}+j_{\alpha}}$ and so $f_{\alpha, l_{\alpha}}=f_{\alpha, 1}^{l_{\alpha}}$. Finally,

$$
\begin{aligned}
\left\langle f_{1}^{j_{1}} \cdots f_{n}^{j_{n}} \mid p_{k_{1}, \ldots, k_{n}}\right\rangle= & \left\langle f_{1, j_{1}} \cdots f_{n, j_{n}} \mid p_{k_{1}, \ldots, k_{n}}\right\rangle \\
= & \sum_{u=j_{1}}^{k_{1}+\cdots+k_{n}-j_{2} \cdots \cdots-j_{n}} \sum_{i_{1}+\cdots+i_{n}=u}^{*} \frac{c_{k_{1}} \cdots c_{k_{n}}}{c_{i_{1}} \cdots c_{i_{n}} c_{k_{1}-i_{1}} \cdots c_{k_{n}-i_{n}}} \\
& \times\left\langle f_{1, j_{1}} \mid p_{i_{1}, \ldots, i_{n}}\right\rangle\left\langle f_{2, j_{2}} \cdots f_{n, j_{n}} \mid p_{i_{1}-i_{1}, \ldots, k_{n}-i_{n}}\right\rangle \\
= & \frac{c_{k 1}}{c_{k_{1} j_{1}}}\left\langle f_{2, j_{2}} \cdots f_{n, j_{n}} \mid p_{\left.k_{1}-j_{1}, k_{2}, \ldots, k_{n}\right\rangle}\right\rangle
\end{aligned}
$$

Continuing in this way we obtain

$$
\begin{aligned}
\left\langle f_{1}^{j_{1}} \cdots f_{n}^{j_{n}} \mid p_{k_{1}, \ldots, k_{n}}\right\rangle & =\frac{c_{k_{1}} \cdots c_{k_{n-1}}}{c_{k_{1}-j_{1}} \cdots c_{k_{n-1}-j_{n-1}}}\left\langle f_{n, j_{n}} \mid p_{k_{1}-j_{1}, \ldots, k_{n-1}-j_{n-1} \cdot k_{n}}\right\rangle \\
& =c_{k_{1}} \cdots c_{k_{n}} \delta_{k_{1}, j_{1}} \cdots \delta_{k_{n}, j_{n}}
\end{aligned}
$$

and so $p_{k_{1}, \ldots k_{n}}$ is the associated sequence for $\left(f_{1,1}, \ldots, f_{n, 1}\right)$.
In the very important special case that $c_{k}=k!$ for $k \geqslant 0$, it is a routine calculation to show that the evaluation series satisfies

$$
\epsilon_{a_{1}, \ldots, a_{n}}^{0, \ldots, \ldots, \epsilon_{b_{1}, \ldots, b_{n}}^{0}}=\epsilon_{a_{1}+b_{1}, \ldots, \sigma_{n}+b_{n}}^{0, \ldots, 0} .
$$

For $p \in P$ we let $\tilde{p} \in P$ be defined by

$$
\begin{aligned}
\left\langle t_{1}^{i_{1}} \cdots t_{n}^{i_{n}} \mid \tilde{p}\right\rangle & =\left\langle t_{1}^{i_{1}} \cdots t_{n}^{i_{n}} \mid p\right\rangle & & \text { for } i_{1}, \ldots, i_{n} \geqslant 0 \\
& =0 & & \text { otherwise. }
\end{aligned}
$$

Thus \tilde{p} consists of that part of p which contains only nonnegative exponents. Then $\left\langle\epsilon_{a_{1}, \ldots, a_{n}}^{0, \ldots, 0} \mid p\right\rangle=\left\langle\epsilon_{a_{1}, \ldots, a_{n}}^{0, \ldots, 0} \mid \hat{p}\right\rangle$ and we have by Corollary 4

$$
\begin{aligned}
& \left\langle\epsilon_{a_{1}+b_{1}, \ldots, a_{n}+b_{n}}^{0, \ldots, 0} \tilde{p}_{i_{1}, \ldots, i_{n}}\right\rangle=\sum_{u=\mathbf{0}}^{i_{1}+\ldots+i_{n}} \sum_{\substack{j_{1}+\cdots+j_{n}=u \\
0 \leq j_{k} \leq i_{k}}}\binom{i_{1}}{j_{\mathbf{1}}} \cdots\binom{i_{n}}{j_{n}} \\
& \times\left\langle\epsilon_{a_{1}, \ldots, a_{n}}^{\left.\mathbf{0}, \ldots, \tilde{p}_{j_{1}, \ldots, j_{n}}\right\rangle\left\langle\epsilon_{b_{1}, \ldots, b_{n}}^{0, \ldots} \mid \tilde{p}_{i_{1}-j_{1}, \ldots, i_{n}-j_{n}}\right\rangle .}\right.
\end{aligned}
$$

We may write this more suggestively as
$\tilde{p}_{i_{1}, \ldots, i_{n}}\left(a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right)$

$$
=\sum_{u=0}^{i_{n}+\cdots+i_{n}} \sum_{\substack{j_{1}+\ldots+j_{n}=u \\ 0 \leqslant j_{n} \leqslant i_{k}}}\binom{i_{1}}{j_{1}} \cdots\binom{i_{n}}{j_{n}} \tilde{p}_{j_{1}, \ldots, j_{n}}\left(a_{1}, \ldots, a_{n}\right) \tilde{p}_{i_{1}-j_{1}, \ldots, i_{n}-j_{n}}\left(b_{1}, \ldots, b_{n}\right)
$$

for all $a_{i}, b_{i} \in K$. We call this the binomial identity.
If $p_{i_{1}, \ldots, i_{n}}$ and $q_{i_{1}, \ldots, i_{n}}$ are associated sequences, and if

$$
p_{i_{1}, \ldots, i_{n}}=\sum_{n=-\infty}^{k} \sum_{j_{1}+\cdots+j_{n}=u} a_{j_{1}, \ldots, j_{n}} q_{j_{1}, \ldots, j_{n}},
$$

then the connection-constants problem is to determine the constants $a_{j_{1}} \ldots, j_{n}$. One solution is given by

Proposition 4. If $p_{i_{1}, \ldots, i_{n}}$ is associated to $\left(f_{1}, \ldots, f_{n}\right)$ and $q_{i_{1}, \ldots, i_{n}}$ is associated to $\left(g_{1}, \ldots, g_{n}\right)$ and if

$$
\begin{equation*}
p_{i_{1}, \ldots, i_{n}}=\sum_{u=-\infty} \sum_{j_{1}+\cdots+j_{n}=u} a_{j_{1}, \ldots, j_{n}} q_{j_{1}, \ldots, j_{n}} \tag{*}
\end{equation*}
$$

then the sequence

$$
r_{i_{1}, \ldots, i_{n}}=\sum_{u=-\infty}^{k} \sum_{j_{1}+\cdots+j_{n}=u}^{*} a_{j_{1}, \ldots j_{n}} x_{\mathbf{1}}^{j_{1}} \cdots x_{n}^{j_{n}}
$$

is the associated sequence for

$$
\left(f_{1}\left(\bar{g}_{1}, \ldots, \bar{g}_{n}\right), \ldots, f_{n}\left(\bar{g}_{1}, \ldots, \bar{g}_{n}\right)\right)
$$

6. Another Action of Γ on P

We wish to find a method of computing the associated sequence of a diagonal delta set. To this end we define another action of Γ on P, which we denote by juxtaposition. Our motivation in defining this action is the requirement that

$$
\left\langle f \mid g x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle=\left\langle f g \mid x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle .
$$

Expanding the right side using Proposition 1, the spanning argument forces us to take

$$
\begin{aligned}
g x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}= & \sum_{u=-\infty}^{i_{1}+\cdots+i_{n}-k} \sum_{j_{1}+\cdots+j_{n}=u}^{*} \frac{c_{i_{1}} \cdots c_{i_{n}}}{c_{j_{1}} \cdots c_{j_{n}} c_{i_{1}-j_{1}} \cdots c_{i_{n}-j_{n}}} \\
& \times\left\langle g \mid x_{1}^{i_{1}-j_{1}} \cdots x_{n}^{i_{n}-j_{n}}\right\rangle x_{1}^{j_{1}} \cdots x_{n}^{j_{n}} .
\end{aligned}
$$

Thus

$$
t_{1}^{k_{1}} \cdots t_{n}^{k_{n}} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}=\frac{c_{i_{1}} \cdots c_{i_{n}}}{c_{i_{1}-k_{1}} \cdots c_{i_{n}-k_{n}}} x_{1}^{i_{1}-k_{1}} \cdots x_{n}^{i_{n}-\grave{k}_{n}}
$$

Moreover, we have

Proposition 5. If $f, g \in \Gamma$, then

$$
f\left(g x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right)=(f g) x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}=(g f) x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}=g\left(f x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right) .
$$

Proof. If $h \in \Gamma$, then

$$
\begin{aligned}
\left\langle h \mid f\left(g x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right)\right\rangle & =\left\langle h f \mid g x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle \\
& =\left\langle h f g \mid x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle \\
& =\left\langle h \mid(f g) x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle
\end{aligned}
$$

and so $f\left(g x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right)=(f g) x_{1}^{i_{1}} \cdots x_{n}^{i_{1}}$. The rest is evident.
We can characterize associated sequences by means of this new action.

Theorem 5. A strong sequence $p_{i_{1}, \ldots, i_{n}}$ is the associated sequence for $\left(f_{1}, \ldots, f_{n}\right)$ if and only if
(1) $\left\langle t_{1}{ }^{0} \cdots t_{n}{ }^{0} \mid p_{i_{1}, \ldots, i_{n}}\right\rangle=\delta_{i_{1}, 0} \cdots \delta_{i_{n}, 0}$,
(2) $f_{1}^{j_{1}} \cdots f_{n}^{j_{n}} p_{i_{1}, \ldots, i_{n}}=\frac{c_{i_{1}} \cdots c_{i_{n}}}{c_{i_{1}-j_{1}} \cdots c_{i_{n}-j_{n}}} p_{i_{1}-j_{1}, \ldots, i_{n}-j_{n}}$.

Proof. Suppose $p_{i_{1}, \ldots, i_{n}}$ is the associated sequence for $\left(f_{1}, \ldots, f_{n}\right)$. Then

$$
\begin{aligned}
\left\langle f_{1}^{k_{1}} \cdots f_{n}^{k_{n}} \mid f_{1}^{j_{1}} \cdots f_{n}^{j_{n}} p_{i_{1}, \ldots, i_{n}}\right\rangle & =\left\langle f_{1}^{k_{1}+j_{1}} \cdots f_{n}^{k_{n}+j_{n}} \mid p_{i_{1}, \ldots, i_{n}}\right\rangle \\
& =c_{i_{1}} \cdots c_{i_{n}} \delta_{i_{1}, j_{1}+k_{1}} \cdots \delta_{i_{n}, j_{n}+k_{n}} \\
& =\frac{c_{i_{1}} \cdots c_{i_{n}}}{c_{i_{1}-j_{1}} \cdots c_{i_{n}-j_{n}}}\left\langle f_{1}^{k_{1}} \cdots f_{n}^{k_{n}} \mid p_{i_{1}-j_{1}, \ldots, i_{n}-j_{n}}\right\rangle
\end{aligned}
$$

and the spanning argument completes the proof. Conversely, if (1) and (2) hold, then

$$
\begin{aligned}
\left\langle f_{1}^{j_{1}} \cdots f_{n}^{j_{n}} \mid p_{i_{1} \ldots . i_{n}}\right\rangle & =\left\langle t_{1}^{0} \cdots t_{n}{ }^{0} \left\lvert\, \frac{c_{i_{1}} \cdots c_{i_{n}}}{c_{i_{1}-j_{1}} \cdots c_{i_{n}-j_{n}}} p_{i_{1}-j_{1}, \ldots, i_{n}-j_{n}}\right.\right\rangle \\
& =c_{i_{1}} \cdots c_{i_{n}} \delta_{i_{1}, j_{1}} \cdots \delta_{i_{n}, j_{n}}
\end{aligned}
$$

Theorem 5 and the Expansion Theorem imply
Corollary 5. If $p_{i_{1}, \ldots, i_{n}}$ is an associated sequence, then for $f \in \Gamma$,

$$
\begin{aligned}
\left\langle f \mid p_{i_{1}, \ldots, i_{n}}\right\rangle= & \sum_{u=m}^{\infty} \sum_{j_{1}+\cdots+j_{n}=u}^{*} \frac{c_{i_{1}} \cdots c_{i_{n}}}{c_{j_{1}} \cdots c_{j_{n}} c_{i_{1}-j_{1}} \cdots c_{i_{n}-j_{n}}} \\
& \times\left\langle f \mid p_{j_{1}, \ldots, j_{n}}\right\rangle p_{i_{1}-j_{1}, \ldots, i_{n}-j_{n}}
\end{aligned}
$$

where $m=\operatorname{deg} f$.
In the important special case that

$$
\begin{aligned}
& c_{k}=k! \\
&=\frac{\text { for } \quad k \geqslant 0}{(-k-1)!} \quad \\
& \text { for } \quad k<0
\end{aligned}
$$

it is easy to show that if $i_{1}, \ldots, i_{n}<0$, then

$$
\epsilon_{b_{1} \ldots, b_{n}}^{0 \ldots \ldots x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}=\left(x_{1}+b_{1}\right)^{i_{1}} \cdots\left(x_{n}+b_{n}\right)^{i_{n}} . . . ~}
$$

Thus Corollary 4, with $f=\epsilon_{a_{1}, \ldots, a_{n}}^{u_{1}, \ldots, u_{n}}$ and $g=\epsilon_{b_{1}, \ldots, b_{n}}^{0, \ldots}$ gives, for the associated sequence $p_{i_{1}, \ldots, i_{n}}$,

$$
\begin{aligned}
\left\langle\epsilon_{a_{1}, \ldots, a_{n}}^{u_{1}, \ldots, u_{n}} \mid \epsilon_{b_{1}, \ldots, b_{n}}^{0, \ldots, 0} p_{i_{1}, \ldots, i_{n}}\right\rangle= & \sum_{u=u_{1}+\cdots+u_{n}}^{i_{1}+\cdots+i_{n}} \sum_{j_{1}+\cdots+j_{n}=u}^{j_{n} \leqslant i_{k}}\binom{i_{1}}{i_{1}} \cdots\binom{i_{n}}{j_{n}} \\
& \times\left\langle\epsilon_{a_{a_{1}, \ldots, a_{n}}^{u_{1}, \ldots, u_{n}}\left|p_{j_{1}, \ldots, j_{n}}\right\rangle\left\langle\epsilon_{b_{1}, \ldots, b_{n}}^{n, \ldots, 0} \mid p_{i_{1}-j_{1}, \ldots, i_{n}-j_{n}}\right\rangle}\right.
\end{aligned}
$$

for all integers u_{1}, \ldots, u_{n}, all $a_{k}, b_{k} \in K$, and all negative integers i_{1}, \ldots, i_{n}. This may be written in the following suggestive form:

$$
\begin{aligned}
p_{i_{1}, \ldots, i_{n}}\left(x_{1}+b_{1}, \ldots, x_{n}+b_{n}\right)= & \sum_{u=-\infty}^{i_{1}+\cdots+i_{n}} \sum_{j_{1}+\cdots+j_{n}=u}^{j_{k} \leqslant i_{k}}\binom{i_{1}}{j_{1}} \cdots\binom{i_{n}}{j_{n}} \\
& \times p_{j_{1}, \ldots, j_{n}}\left(x_{1}, \ldots, x_{n}\right) \tilde{p}_{i_{1}-j_{1}, \ldots, i_{n}-j_{n}}\left(b_{1}, \ldots, b_{n}\right)
\end{aligned}
$$

for all $b_{1}, \ldots, b_{n} \in K$ and all negative integers i_{1}, \ldots, i_{n}. We call this the factor binomial identity.

7. The Transfer Formula

In this section we derive a formula for the associated sequence to a diagonal delta set. For $j=1, \ldots, n$ let θ_{j} be the continuous operator on P defined by

$$
\theta_{j} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}=\frac{\left(i_{j}+1\right) c_{i_{j}}}{c_{i_{j}}+1} x_{1}^{i_{1}} \cdots x_{j-1}^{i_{j-1}} x_{j}^{i_{j}+1} x_{j+1}^{i_{j+1}} \cdots x_{n}^{i_{n}}
$$

Then

$$
\begin{aligned}
\left\langle\theta_{j}^{*} t_{1}^{k_{1}} \cdots t_{n}^{k_{n}} \mid x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle & =\frac{\left(i_{j}+1\right) c_{i_{j}}}{c_{i_{j}}+1}\left\langle t_{1}^{k_{1}} \cdots t_{n}^{k_{n}} \mid x_{1}^{i_{1}} \cdots x_{j}^{i_{j}+1} \cdots x_{n}^{i_{n}}\right\rangle \\
& =\left\langle k_{j} t_{1}^{k_{1}} \cdots t_{j}^{k_{j}-1} \cdots t_{n}^{k_{n}} \mid x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle \\
& =\left\langle\left.\frac{\partial}{\partial t_{j}} t_{1}^{k_{1}} \cdots t_{n}^{k_{n}} \right\rvert\, x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle
\end{aligned}
$$

where $\partial / \partial t_{j}$ is the partial derivative operator on Γ. Thus $\theta_{j}^{*}=\partial / \partial t_{j}$.
If $f_{1}, \ldots, f_{n} \in \Gamma$, the Jacobian $\partial\left(f_{1}, \ldots, f_{n}\right)$ is the formal series

$$
\partial\left(f_{1}, \ldots, f_{n}\right)=\operatorname{det}\left(\frac{\partial}{\partial t_{j}} f_{i}\right)
$$

Theorem 6 (Transfer Formula). If $p_{i_{1}, \ldots, i_{n}}$ is the associated sequence for the diagonal delta set $\left(f_{1}, \ldots, f_{n}\right)$ then

$$
p_{i_{1}, \ldots, i_{n}}=\frac{c_{i_{1}} \cdots c_{i_{n}}}{c_{-1}^{n}} \partial\left(f_{1}, \ldots, f_{n}\right) f_{1}^{-1-i_{1}} \cdots f_{n}^{-1 \sim i_{n}} x_{1}^{-1} \cdots x_{n}^{-1}
$$

Proof. We will show that the right-hand side satisfies the conditions of Theorem 5. It is easy to see that the right-hand side is a strong sequence, and condition 2 is straightforward.

We must show that

$$
\left\langle\partial\left(f_{1}, \ldots, f_{n}\right) f_{1}^{-1-i_{n}} \cdots f_{n}^{-1-i_{n}} \mid x_{1}^{-1} \cdots x_{n}^{-1}\right\rangle=c_{-1}^{n} \delta_{i_{1}, 0} \cdots \delta_{i_{n}, 0} .
$$

Since $f_{j}=t_{j}-g_{j}$ we have

$$
f_{j}^{-1-i_{j}}=\sum_{k_{j} z^{0}}\binom{i_{j}+k_{j}}{k_{j}} g_{j}^{k_{j}} t_{j}^{-1-i_{j}-k_{j}}
$$

and writing ∂ for $\partial\left(f_{1}, \ldots, f_{n}\right)$ and D_{j} for $\partial / \partial t_{j}$,

$$
\begin{aligned}
& \left\langle\partial f_{1}^{-1-i_{1}} \cdots f_{n}^{-1-i_{n}} \mid x_{1}^{-1} \cdots x_{n}^{-1}\right\rangle \\
& =\left\langle\partial \sum_{k_{1}, \ldots, k_{n} \geqslant 0}\binom{i_{1}+k_{1}}{k_{1}} \cdots\binom{i_{n}+k_{n}}{k_{n}} g_{1}^{k_{1}} \cdots g_{n}^{k_{n}}\right| \\
& \left.t_{1}^{-1-i_{1}-k_{1}} \cdots t_{n}^{-1-i_{n}-k_{n}} x_{1}^{-1} \cdots x_{n}^{-1}\right\rangle \\
& =\left\langle\partial \sum_{k_{1}, \ldots, k_{n} \geqslant 0}\binom{i_{1}+k_{1}}{k_{I}} \cdots\binom{i_{n}+k_{n}}{k_{n}} g_{1}^{k_{1}} \cdots g_{n}^{k_{n}}\right| \\
& \left.\frac{c_{-1}^{n}}{c_{i_{1}+k_{1}} \cdots c_{i_{n}+k_{n}}} x_{1}^{i_{1}+k_{1}} \cdots x_{n}^{i_{n}+k_{n}}\right\rangle \\
& =\left\langle\partial \sum_{k_{1}, \ldots, k_{n} \geqslant 0} \frac{g_{1}^{k_{1}}}{k_{1}!} \cdots \frac{g_{n}^{k_{n}}}{k_{n}!} \left\lvert\, \frac{c_{-1}^{n}}{c_{i_{1}} \cdots c_{i_{n}}} \theta_{1}^{k_{1}} \cdots \theta_{n}^{k_{n}} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right.\right\rangle \\
& =\frac{c_{-1}^{n}}{c_{i_{1}} \cdots c_{i_{n}}}\left\langle\left.\sum_{k_{1}, \ldots, k_{n} \geqslant 0} D_{k_{1}} \cdots D_{k_{n}}\left(\partial \frac{g_{1}^{k_{1}}}{k_{1}!} \cdots \frac{g_{n}^{k_{n}}}{k_{n}!}\right) \right\rvert\, x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle .
\end{aligned}
$$

So if we write $g_{i}^{k_{i}} / k_{i}!=h_{i}^{k_{i}}$, we are left with showing that

$$
\sum_{k_{1}, \ldots, k_{n} \geqslant 0} D_{k_{1}} \cdots D_{k_{n}}\left[\partial h_{1}^{k_{1}} \cdots h_{n}^{k_{n}}\right]=1 .
$$

This fact has been proved by S. A. Joni but we repeat it here for the sake of completeness. We have $\partial=\operatorname{det}\left(\delta_{i, j}-D_{i} g_{j}\right)$ and so

$$
\partial h_{1}^{k_{1}} \cdots h_{n}^{k_{n}}=\operatorname{det}\left(\delta_{i, j} h_{j}^{k_{j}}-D_{i} h_{j}^{k_{j}+1}\right)
$$

If $A=\{1, \ldots, n\}$, then this determinant is equal to (see Muir, p. 109)

$$
\sum_{a \subseteq A}(-1)^{|a|}\left(\prod_{i \in A-a} h_{i}^{k_{i}}\right) \operatorname{det}\left(D_{i} h_{j}^{k_{j}+1}\right)_{(i, j) \in a \times a}
$$

and so we must show that

$$
\sum_{a \subseteq A}(-1)^{|a|} \sum_{k_{1}, \ldots, k_{n} \geqslant 0} D_{1}^{k_{1}} \cdots D_{n}^{k_{n}}\left[\left(\prod_{i \in A-a} h_{i}^{k_{i}}\right) \operatorname{det}\left(D_{i} h_{j}^{k_{j}+1}\right)_{(i, j) \in a \times a}\right]=1
$$

Note that if $k_{i}=0$, then $h_{i}^{k}=1$. If we think of $b \subseteq A$ as the set for which $k_{i}=0$ if $i \in A-b$, we may write the above sum as

$$
\sum_{a \subseteq A}(-1)^{|a|} \sum_{\substack{k_{\alpha} \geqslant 0 \\ \alpha \in a}} \sum_{b \supseteq a} \sum_{\substack{k_{\beta} \geqslant 1 \\ \beta \in b-a}} D_{1}^{k_{1}} \cdots D_{n}^{k_{n}}\left[\left(\prod_{i \in A-a} h_{i}^{k_{i}}\right) \operatorname{det}\left(D_{i} h_{j}^{k_{j}+1}\right)_{(i, j) \in a \times a}\right],
$$

where if $a=b=\varnothing$ the sum is 1 . This equals

$$
\begin{aligned}
& \sum_{b \subseteq A} \sum_{a \subseteq b}(-1)^{|a|} \sum_{\substack{k_{\alpha} \geqslant 0 \\
\alpha \in b}}\left(\prod_{i \in a} D_{i}^{k_{i}}\right)\left(\prod_{i \in b-a} D_{i}^{k_{i}+1}\right)\left[\left(\prod_{i \in b-a} h_{i}^{k_{i}+1}\right) \operatorname{det}\left(D_{i} h_{j}^{k_{j}+1}\right)_{(i, j) \in a \times a}\right] \\
& =\sum_{b \subseteq A} \sum_{\substack{k_{\alpha}>0 \\
\alpha \in b}}\left(\prod_{i \in b} D_{i}^{k_{i}}\right) \sum_{\substack{a \subseteq b}}(-1)^{|a|}\left(\prod_{i \in b-a} D_{i}\right)\left[\left(\prod_{i \in b-a} h_{i}^{k_{i}+1}\right) \operatorname{det}\left(D_{i} h_{j}^{k_{j}+1}\right)_{(i, j) \in a \times a}\right] .
\end{aligned}
$$

The following lemma will then complete the proof.
Lemma. If $l_{i} \in \Gamma$ for $i=1, \ldots, n$, then for b, a nonempty subset of A,

$$
\sum_{a \subseteq b}(-1)^{|a|}\left(\prod_{i \in b-a} D_{i}\right)\left[\left(\prod_{i \in b-a} l_{i}\right) \operatorname{det}\left(D_{i} l_{j}\right)_{(i, j) \in a \times a}\right]=0 .
$$

Proof of lemma. We may assume that $b=\{1, \ldots, m\}$. After all differentiation is performed, each term is of the form

$$
\pm\left(B_{1} l_{1}\right) \cdots\left(B_{m} I_{m}\right)
$$

where $\left\{B_{1}, \ldots, B_{m}\right\}$ forms a partition (with possibly $B_{i}=\varnothing$) of $\left\{D_{1}, \ldots, D_{m}\right\}$. In fact, for a fixed set $a \subseteq b$ and for each permutation σ of a, the determinant produces terms of this form for which $D_{\sigma(i)} \in B_{i}$ for all $i \in a$; that is, terms of the form

$$
(-1)^{|a|}(-1)^{\sigma}\left(\prod_{i \in a} c_{i} D_{\sigma(i)} l_{i}\right)\left(\prod_{j \in b-a} c_{j} l_{j}\right)
$$

where $\left\{c_{1}, \ldots, c_{m}\right\}$ is a partition of $\left\{D_{j}\right\}_{j \in b-a}$. Moreover, all contributions from set a are of this form for some σ. However, as the set a varies, we count each term of the above form more than once. Consider a fixed partition $\left\{B_{1}, \ldots, B_{m}\right\}$ of $\left\{D_{1}, \ldots, D_{m}\right\}$ and the corresponding expression

$$
\left(B_{1} l_{1}\right) \cdots\left(B_{m} l_{m}\right)
$$

If there are r cycles $\alpha_{1}, \ldots, \alpha_{r}$ in b for which $D_{\alpha_{i}(j)} \in B_{j}$ for all j for which $\alpha_{i}(j)$ is defined, then this expression is counted once for each product of any of the cycles $\alpha_{1}, \ldots, \alpha_{r}$. The corresponding set a is the union of the cycles involved in the product. Moreover, if σ is the product of k cycles, then $(-1)^{|a|}(-1)^{a}=(-1)^{k}$. Thus the above expression is counted

$$
\sum_{k=0}^{m}\binom{m}{k}(-1)^{k}=0
$$

times, and the lemma is proved.

8. Sheffer Sequences

A large number of sequences occurring in the literature are not associated sequences, but are closely related to them. If $p_{i_{1}, \ldots, i_{n}}$ is an associated sequence in P and if g is a series of degree 0 in Γ, then the sequence

$$
s_{i_{1}, \ldots, i_{n}}=g p_{i_{1}, \ldots, i_{n}}
$$

is called the Sheffer sequence for $p_{i_{1} \ldots \ldots, i_{n}}$ relative to g.
The following lemma will help characterize Sheffer sequences.
Lemma. Suppose L is a linear operator on P with the property that

$$
f L p=L f p
$$

for all $f \in \Gamma$ and $p \in P$. Then there exists a series $l \in \Gamma$ for which

$$
l p=L p
$$

for all $p \in P$.
Proof. We have

$$
\begin{aligned}
\left\langle L^{*}(f) \mid p\right\rangle & =\langle f \mid L p\rangle \\
& =\langle 1 \mid f L p\rangle \\
& =\langle 1 \mid L f p\rangle \\
& =\left\langle L^{*}(1) \mid f p\right\rangle \\
& =\left\langle L^{*}(1) f \mid p\right\rangle
\end{aligned}
$$

and so

$$
L^{*}(1) f=L^{*}(f)
$$

Then if we set $l=L^{*}(1)$, we have

$$
\langle f \mid l p\rangle=\langle f l \mid p\rangle=\left\langle L^{*}(f) \mid p\right\rangle=\langle f \mid L p\rangle
$$

and so

$$
l p=L p
$$

We can now characterize Sheffer sequences.
Theorem 7. A strong sequence $s_{i_{1}} \ldots . i_{n}$ in P is a Sheffer sequence if and only if there exists a diagonal delta set $\left(f_{1}, \ldots, f_{n}\right)$ for which

$$
f_{1}^{j_{1}} \cdots f_{n}^{j_{n}} s_{i_{1}, \ldots \cdot i_{n}}=\frac{c_{i_{1}} \cdots c_{i_{n}}}{c_{i_{1}-j_{1}} \cdots c_{i_{n}-j_{n}}} s_{i_{1}-j_{1}, \ldots, i_{n}-j_{n}} .
$$

Proof. If $s_{i_{1}, \ldots, i_{n}}$ is a Sheffer sequence then there exists an associated sequence $p_{i_{1}, \ldots, i_{n}}$ for which

$$
s_{i_{1}, \ldots . i_{n}}=g p_{i_{1}, \ldots, i_{n}} .
$$

Then if $p_{i_{1}, \ldots, i_{n}}$ is the associated sequence for $\left(f_{1}, \ldots, f_{n}\right)$ we have

$$
\begin{aligned}
f_{1}^{j_{1}} \cdots f_{n}^{j_{n}} s_{i_{1}, \ldots, i_{n}} & =f_{1}^{j_{1}} \cdots f_{n}^{j_{n}} g p_{i_{1}, \ldots, i_{n}} \\
& =g f_{1}^{j_{1}} \cdots f_{n}^{j_{n}} p_{i_{1}, \ldots, i_{n}} \\
& =g \frac{c_{i_{1}} \cdots c_{i_{n}}}{c_{i_{1}-j_{1}} \cdots c_{i_{n}-j_{n}}} p_{i_{1}-j_{1}, \ldots, i_{n}-j_{n}} \\
& =\frac{c_{i_{1}} \cdots c_{i_{n}}}{c_{i_{1}-j_{1}} \cdots c_{i_{n}-j_{n}}} s_{i_{1}-j_{1}, \ldots, i_{n}-j_{n}} .
\end{aligned}
$$

For the converse, define the continuous linear operator L by

$$
L p_{i_{1}, \ldots, i_{n}}=s_{i_{1}, \ldots, i_{n}},
$$

where $p_{i_{1}, \ldots, i_{n}}$ is the associated sequence for $\left(f_{1}, \ldots, f_{n}\right)$. Then

$$
\begin{aligned}
f_{1}^{j_{1}} \cdots f_{n}^{j_{n}} L p_{i_{1}, \ldots, i_{n}} & =f_{1}^{j_{1}} \cdots f_{n}^{j_{n}} s_{i_{1}, \ldots, i_{n}} \\
& =\frac{c_{i_{1}} \cdots c_{i_{n}}}{c_{i_{1}-j_{1}} \cdots c_{i_{n}-j_{n}}} s_{i_{1}-j_{1}, \ldots, i_{n}-j_{n}} \\
& =L f_{1}^{j_{1}} \cdots f_{n}^{j_{n}} p_{i_{1} \ldots, i_{n}}
\end{aligned}
$$

and so

$$
L f=f L
$$

for all $f \in \Gamma$. The lemma then implies that there exists $l \in \Gamma$ for which

$$
l p_{i_{1}, \ldots, i_{n}}=s_{i_{1}, \ldots, i_{n}} .
$$

Since deg $l=0$ the sequence $s_{i_{1}, \ldots, i_{n}}$ is a Sheffer sequence.

9. Delta Sets

Suppose $f_{1}, \ldots, f_{n} \in \Gamma$ are of the form

$$
f_{i}=a_{j, 1} t_{1}+\cdots+a_{j, n} t_{n}+g_{j},
$$

where $a_{j, i} \in K, g_{j}=0$ or else g_{j} is a power series of degree at least two, and $\operatorname{det} a_{j, i} \neq 0$. Then it is well known that $\left(f_{1}, \ldots, f_{n}\right)$ has a compositional inverse $\left(f_{1}, \ldots, f_{n}\right)$, which is of the same form as $\left(f_{1}, \ldots, f_{n}\right)$. We call such sets $\left(f_{1}, \ldots, f_{n}\right)$ delta sets.

Unfortunately, our work up to now is not general enough to deal with delta sets. This is mainly because an element f_{j} of a delta set does not necessarily have a multiplicative inverse in Γ. It is possible to generalize the algebra Γ and thereby introduce a multiplicative inverse. However, all attempts made so far to do this seem to produce more difficulties than they eliminate. We are forced therefore to restrict our considerations rather than to extend them.

Let $\Lambda \subseteq \Gamma$ be the algebra of all formal power series in the variables t_{1}, \ldots, t_{n}. Thus if $f \in \Lambda$ we have

$$
f=\sum_{u=m}^{\infty} \sum_{\substack{i_{1}+\cdots+i_{1}=u \\ i_{j} \geqslant n^{\prime}}} a_{i_{1}, \ldots, i_{n}} i_{1}^{i_{n}} \cdots t_{n}^{i_{n}},
$$

where m is a nonnegative integer, and the inner sum is automatically a finite one. Let $R \subseteq P$ be the algebra of all polynomials in the variables x_{1}, \ldots, x_{n}. Thus $p \in R$ may be written

$$
p=\sum_{v=0}^{k} \sum_{j_{1}+\cdots+\cdots+j_{n}=v} b_{j_{1}, \ldots, j_{n}} x_{1}^{j_{1}} \cdots x_{n}^{i_{n}} .
$$

Most of the definitions and results of the previous sections carry over to the subalgebras Λ and R. Therefore, we will proceed informally, giving proofs only when there is a significant deviation from the earlier theory.

We keep the same definitions of degree, strong sequence in R, composition in Λ and umbral composition in R. Moreover, we keep the same definition of the action of Γ on P as described in Section 4. In other words, if $f \in \Lambda$ and $p \in R$, we think of the action $\langle f \mid p\rangle$ as the one defined for $f \in \Gamma$ and $p \in P$. Thus

$$
f=\sum_{u=m}^{\infty} \sum_{i_{1}+\cdots+i_{i}+i_{n}=u} \frac{\left\langle f \mid x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle}{c_{i_{1}} \cdots c_{i_{n}}} t_{1}^{i_{1}} \cdots t_{n}^{i_{n}}
$$

and

$$
p=\sum_{v=0}^{j,} \sum_{j_{1}+\cdots++j_{n}=v} \frac{\left\langle t_{1}^{j_{1}} \cdots t_{n}^{j_{n}} \mid p\right\rangle}{c_{j_{1}} \cdots c_{j_{n}}} x_{1}^{j_{1}} \cdots x_{n}^{j_{n}} .
$$

The spanning arguments still hold for Λ and R, and so does Proposition 1 .

However, the action of Γ on P described in Section 6 needs some modification. We take

$$
\begin{aligned}
t_{1}^{k_{1}} \cdots t_{n}^{k_{n}} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}} & =\frac{c_{i_{1}} \cdots c_{i_{n}}}{c_{k_{1}-i_{1}} \cdots c_{k_{n}-i_{n}}} x_{1}^{i_{1}-k_{1}} \cdots x_{n}^{i_{n}-k_{n}} & \text { if } i_{j} \geqslant k_{j} \text { for all } j, \\
& =0 & \text { otherwise },
\end{aligned}
$$

and extend this to all of Λ and R. If $g \in \Lambda$ we have

$$
\begin{aligned}
g x_{1}^{j_{1}} \cdots x_{n}^{j_{n}}= & \sum_{u=m}^{j_{1}+\cdots+j_{n}} \sum_{\substack{i_{1}+\cdots+i_{n}=u \\
i_{k} \geqslant 0}}^{i_{k} \leqslant j_{k}} \frac{c_{j_{1}} \cdots c_{j_{n}}}{c_{i_{1}} \cdots c_{i_{n}} c_{j_{1}-i_{1}} \cdots c_{j_{n}-i_{n}}} \\
& \times\left\langle g \mid x_{1}^{i_{1}-j_{1}} \cdots x_{n}^{i_{n}-j_{n}}\right\rangle x_{1}^{j_{1}} \cdots x_{n}^{j_{n}}
\end{aligned}
$$

as well as

$$
\left\langle f \mid g x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle=\left\langle f g \mid x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle
$$

and

$$
f g x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}=g f x_{1}^{i_{n}} \cdots x_{n}^{i_{n}} .
$$

10. Associated Sequences for Delta Sets

The associated sequence for a delta set $\left(f_{1}, \ldots, f_{n}\right)$ in Λ is the strong sequence $p_{i_{1}, \ldots, i_{n}}$ satisfying

$$
\left\langle f_{1}^{j_{1}} \cdots f_{n}^{j_{n}} \mid p_{i_{1}, \ldots, i_{n}}\right\rangle=c_{i_{1}} \cdots c_{i_{n}} \delta_{i_{1}, j_{1}} \cdots \delta_{i_{n}, j_{n}}
$$

for all nonnegative integers j_{1}, \ldots, j_{n} and i_{1}, \ldots, i_{n}. Our first task is to show that the associated sequence exists and is unique.

Suppose $\left(f_{1}, \ldots, f_{n}\right)$ is a delta set. Then since $\operatorname{det} a_{i, j} \neq 0$ we conclude that any $g \in \Lambda$ can be written as a sum,

$$
\begin{equation*}
g=\sum_{u=m}^{\infty} \sum_{i_{1}+\cdots+i_{n}=u}^{i_{j} \geqslant 0} \mid a_{i_{1} \ldots, i_{n}} f_{1}^{i_{1}} \cdots f_{n}^{i_{n}}, \tag{*}
\end{equation*}
$$

for some $m \geqslant 0$ and $a_{i_{1}, \ldots i_{n}} \in K$.
Now suppose $p_{i_{1}, \ldots, i_{n}}$ is a set of elements of Λ, where i_{1}, \ldots, i_{n} range over all nonnegative integers. Thus $p_{i_{1}, \ldots, i_{n}}$ need not be a strong sequence. Let $p_{i_{1}, \ldots, i_{n}}$ have the property that

$$
\left\langle f_{1}^{j_{1}} \cdots f_{n}^{j_{n}} \mid p_{i_{1}, \ldots, i_{n}}\right\rangle==c_{i_{1}} \cdots c_{i_{n}} \delta_{i_{1}, j_{1}} \cdots \delta_{i_{n}, j_{n}} .
$$

Then if we apply both sides of $\left(^{*}\right)$ to $p_{j_{1}, \ldots, j_{n}}$ we obtain

$$
a_{j_{1}, \ldots, j_{n}}=\frac{\left\langle\boldsymbol{g} \mid p_{j_{1}, \ldots, j_{n}}\right\rangle}{c_{j_{1}} \cdots c_{j_{n}}}
$$

and so

$$
g=\sum_{u=m}^{\infty} \sum_{\substack{i_{1}+\cdots+i_{n}=u \\ i_{j} \geqslant 0}} \frac{\left\langle g \mid p_{i_{1}, \ldots, i_{n}}\right\rangle}{c_{i_{1}} \cdots c_{i_{n}}} f_{1}^{i_{1}} \cdots f_{n}^{i_{n}}
$$

We would like to conclude that the set $p_{i_{1}, \ldots, i_{n}}$ is a strong sequence in R. That is, that each $q \in R$ can be written as a unique sum

$$
q=\sum_{u=0}^{k} \sum_{\substack{i_{1}+\cdots+i_{i}=u \\ i_{j} \geqslant 0}} a_{i_{1}, \ldots, i_{n}} p_{i_{1}, \ldots, i_{n}}
$$

for some $k \geqslant 0$ and $a_{i_{1} \ldots, i_{n}} \in K$. Recall that the evaluation series $\epsilon_{a_{1}, \ldots, a_{n}}^{0, \ldots, 0}$ is defined by

$$
\left\langle\epsilon_{a_{1}, \ldots, a_{n}}^{0, \ldots, 0} \mid x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle=a_{1}^{i_{1}} \cdots a_{n}^{i_{n}}
$$

for all $i_{1}, \ldots, i_{n} \geqslant 0$. It is clear that if $p, q \in R$ and $\left\langle\epsilon_{a_{1}, \ldots, a_{n}}^{0, \ldots, 0} \mid p\right\rangle=$ $\left\langle\epsilon_{a_{1}, \ldots, a_{n}}^{0, \ldots, 0} \mid q\right\rangle$ for all $a_{1}, \ldots, a_{n} \in K$ then $p=q$. Since

$$
\epsilon_{a_{1}, \ldots, a_{n}}^{0, \ldots, 0}=\sum_{u=0}^{\infty} \sum_{i_{1}+\cdots+i_{n}=u} \frac{\left\langle\epsilon_{a_{1}}^{i_{j} \geqslant 0} 0 \ldots, \ldots, a_{n} \mid p_{\left.i_{1}, \ldots, i_{n}\right\rangle}^{0}\right\rangle}{c_{i_{1}} \cdots c_{i_{n}}} f_{1}^{i_{1}} \cdots f_{n}^{i_{n}}
$$

we conclude that for any $q \in R$ with $\operatorname{deg} q=k$,

$$
\begin{aligned}
& \left\langle\epsilon_{a_{1}, \ldots, a_{n}}^{\mathbf{0}, \ldots, 0} \mid q\right\rangle=\sum_{u=0}^{k} \sum_{i_{1}+\cdots+i_{n}=u} \frac{\left\langle f_{1}^{i_{1}} \cdots f_{n}^{i_{n}} \mid q\right\rangle}{c_{i_{1}} \cdots c_{i_{n}}}\left\langle\epsilon_{i_{1}, \ldots, a_{n}}^{\mathbf{0}, \ldots, 0} \mid p_{i_{1}, \ldots, i_{n}}\right\rangle \\
& =\left\langle\epsilon_{a_{1} \ldots, ., a_{n}}^{0, \ldots, 0} \left\lvert\, \sum_{u=0} \sum_{i_{1}+\cdots+i_{n}=u} \frac{\left\langle f_{1}^{i_{1}} \cdots f_{n}^{i_{n}} i_{n} \mid q\right\rangle}{c_{i_{1}} \cdots c_{i_{n}}} p_{i_{1} \ldots . i_{n}}\right.\right\rangle
\end{aligned}
$$

and so

$$
q=\sum_{u=0}^{k} \sum_{i_{1}+\cdots+i_{n}=u} \frac{\left\langle f_{1}^{i_{1}} \cdots f_{n}^{i_{n}} \mid q\right\rangle}{c_{i_{1}} \cdots c_{i_{n}}} p_{i_{1}, \ldots, i_{n}} .
$$

Moreover, if

$$
q=\sum_{u=0} \sum_{i_{1}+\cdots+i_{n}=u} a_{i_{1}, \ldots, i_{n}} p_{i_{1}, \ldots, i_{n}}
$$

then by applying $f_{1}^{j_{1}} \cdots f_{n}^{j_{n}}$ to both sides we see that

$$
a_{j_{1} \ldots, j_{n}}=\frac{\left\langle f_{1}^{j_{1}} \cdots f_{n}^{j_{n}} \mid q\right\rangle}{c_{j_{1}} \cdots c_{j_{n}}}
$$

and thus the coefficients are uniquely determined. So $p_{i_{1}, \ldots, i_{n}}$ is a strong sequence.

Theorem 8. Every delta set has a unique associated sequence.
Proof. The uniqueness proof is the same as that in Theorem 1. The identity

$$
\left\langle t_{1}^{j_{1}} \cdots t_{n}^{j_{n}} \mid p_{i_{1}, \ldots, i_{n}}\right\rangle=\left\langle\bar{f}_{1}^{j_{1}} \cdots f_{n}^{j_{n}} \mid x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle
$$

defines a set $p_{i_{1}, \ldots, i_{n}}$ in R and as in the proof of Theorem 1 we have

$$
\left\langle f^{j_{1}} \cdots f^{j_{n}} \mid p_{i_{1}, \ldots i_{n}}\right\rangle=c_{i_{1}} \cdots c_{i_{n}} \delta_{i_{1}, j_{1}} \cdots \delta_{i_{n}, i_{n}} .
$$

By previous remarks the set $p_{i_{1}}, \ldots, i_{n}$ is a strong sequence in R and therefore is the associated sequence for $\left(f_{1}, \ldots, f_{n}\right)$.

It is clear from the proof of Theorem 8 that $\operatorname{deg} p_{i_{1}, \ldots, i_{n}} \leqslant i_{1}+\cdots+i_{n}$. To see that $\operatorname{deg} p_{i_{1}, \ldots, i_{n}}=i_{1}+\cdots+i_{n}$ we must show that $p_{i_{1}, \ldots, i_{n}}$ has a term of the form $t_{1}^{i_{1}} \cdots t_{n}^{j_{n}}$ for which $j_{1}+\cdots+j_{n}=i_{1}+\cdots+i_{n}$. That is, we must show that $\left\langle t_{1}^{j_{1}} \cdots t_{n}^{j_{n}} \mid p_{i_{1} \ldots, i_{n}}\right\rangle=\left\langle\hat{f}_{1}^{j_{1}} \cdots f_{n}^{j_{n}} \mid x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle$ is different from zero for some $j_{1}+\cdots+j_{n}=i_{1}+\cdots+i_{n}$.

Clearly, we may assume that

$$
f_{i}=a_{i, 1} t_{1}+\cdots+a_{i, n} t_{n}
$$

Then we have

$$
t_{i}=a_{i, 1} \bar{f}_{1}+\cdots+a_{i, n} \bar{f}_{n}
$$

and so

$$
\begin{aligned}
t_{1}^{i_{1}} \cdots t_{n}^{i_{n}} & =\prod_{i=1}^{n}\left(a_{i, 1} \bar{f}_{1}+\cdots+a_{i, n} \bar{f}_{n}\right)^{i_{n}} \\
& =\sum_{u_{1}+\cdots+u_{n}=i_{1}+\cdots+i_{n}} \alpha_{u_{1}, \ldots, u_{n}} \bar{f}_{1}^{u_{1}} \cdots \bar{f}_{n}^{u_{n}}
\end{aligned}
$$

for some constants $\alpha_{u_{1}, \ldots, u_{n}}$. Thus for some u_{1}, \ldots, u_{n} with $u_{1}+\cdots+u_{n}=$ $i_{1}+\cdots+i_{n}$ it must be true that $\bar{f}_{1}^{u_{1}} \cdots \bar{f}_{n}^{u_{n}}$ contains a term of the form $t_{1}^{i_{1}} \cdots t_{n}^{i_{n}}$.

The transfer operator associated with $p_{i_{1} \ldots, i_{n}}$ is the linear operator λ defined by

$$
\lambda x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}=p_{i_{1}, \ldots, i_{n}}
$$

and the analog of Theorem 2 and its corollaries hold for Λ and R.

Theorem 9. A linear operator λ on R is a transfer operator if and only if its adjoint λ^{*} is a continuous automorphism of Λ which maps delta sets to delta sets.

COROLLARY 6. (a) If $\lambda x_{1}^{i_{1}} \cdots x_{n}^{i_{n}} \rightarrow p_{i_{1}, \ldots, i_{n}}$ is a transfer operator and $p_{i_{1}, \ldots, i_{n}}$ is associated to $\left(f_{1}, \ldots, f_{n}\right)$, then if $g \in \Lambda$,

$$
\lambda^{*} g=g\left(\bar{f}_{1}, \ldots, f_{n}\right) .
$$

In particular,

$$
\lambda^{*} f_{1}^{j_{1}} \cdots f_{n}^{j_{n}}=t_{1}^{j_{1}} \cdots t_{n}^{j_{n}}
$$

(b) A transfer operator maps associated sequences to associated sequences.
(c) If $\lambda: p_{i_{1}, \ldots, i_{n}} \rightarrow q_{i_{1}, \ldots, i_{n}}$ is a linear operator, and $p_{i_{1}, \ldots, i_{n}}$ is associated to $\left(f_{1}, \ldots, f_{n}\right)$ and $q_{i_{1} \ldots, i_{n}}$ is associated to $\left(g_{1}, \ldots, g_{n}\right)$ then λ is a transfer operator and

$$
\lambda^{*} g_{1}^{i_{1}} \cdots g_{n}^{i_{n}}=f_{1}^{i_{1}} \cdots f_{n}^{i_{n}} .
$$

THEOREM 10. If $\left(f_{1}, \ldots, f_{n}\right)$ has associated sequence $p_{i_{1}}, \ldots, i_{n}$ and $\left(g_{1}, \ldots, g_{n}\right)$ has associated sequence $q_{i_{1}, \ldots, i_{n}}$, then $\left(f_{1}\left(g_{1}, \ldots, g_{n}\right), \ldots, f_{n}\left(g_{1}, \ldots, g_{n}\right)\right.$) has associated sequence $p_{i_{1}, \ldots, i_{n}}(\mathbf{q})$.

The conjugate sequence for the delta set $\left(f_{1}, \ldots, f_{n}\right)$ is the associated sequence for ($\bar{f}_{1}, \ldots, \bar{f}_{n}$) and so equals

$$
q_{i_{1}, \ldots i_{n}}=\sum_{u=0}^{i_{1}+\cdots+i_{n}} \sum_{\substack{j_{1}+\cdots+\cdots+j_{n}=u \\ j_{i} \geqslant 0}} \frac{\left\langle f_{1}^{j_{1}} \cdots f_{n}^{j_{n}} \mid x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle}{c_{j_{1}} \cdots c_{j_{n}}} x_{1}^{j_{1}} \cdots x_{n}^{j_{n}} .
$$

COROLLARy 7. If $p_{i_{1}, \ldots, i_{n}}$ and $q_{i_{1}, \ldots, i_{n}}$ are the associated and conjugate sequences for $\left(f_{1}, \ldots, f_{n}\right)$, then

$$
p_{i_{1}, \ldots, i_{n}}(\mathbf{q})=x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}=q_{i_{1} \ldots, i_{n}}(\mathbf{p})
$$

We also have the all important Expansion Theorem and its corollaries.
Theorem 11 (Expansion Theorem). Let $\left(f_{1}, \ldots, f_{n}\right)$ be a delta set with associated sequence $p_{i_{1}, \ldots . i_{n}}$. Then if $g \in \Gamma$, we have

$$
g=\sum_{u=m}^{\infty} \sum_{\substack{i_{1}+\cdots,+i i_{n}=u \\ i_{z} \geqslant 0}} \frac{\left\langle g \mid p_{i 1} \ldots, i_{n}\right\rangle}{c_{i_{1}} \cdots c_{i_{n}}} f_{1}^{i_{1}} \cdots f_{n}^{i_{n}},
$$

where $m=\operatorname{deg} g$.
Corollary 8. If $p_{i_{1} \ldots . \ldots i_{n}}$ is the associated sequence for $\left(f_{1}, \ldots, f_{n}\right)$ and if $q \in P$, then

$$
q=\sum_{u=0}^{k} \sum_{j_{1}+\cdots+j_{n}=u}^{j_{i} \geq 0} \mathbf{} \frac{\left\langle f_{1}^{j_{1}} \cdots f_{n}^{j_{n}} \mid q\right\rangle}{c_{j_{1}} \cdots c_{j_{n}}} p_{j_{1} \ldots \ldots j_{n}},
$$

where $k=\operatorname{deg} q$.
The Expansion Theorem gives us the generating function of the associated sequence.

Corollary 9. If $p_{i_{1}, \ldots, i_{n}}$ is the associated sequence for $\left(f_{1}, \ldots, f_{n}\right)$, then

$$
\left.\epsilon_{\epsilon_{1} \ldots ., y_{u}}^{\mathbf{0}, \ldots, \bar{f}_{1}}, \ldots, \bar{f}_{n}\right)=\sum_{u=0}^{\infty} \sum_{i_{1}+\cdots+i_{n}=u}^{i_{i}+0} p_{i_{1}, \ldots, i_{n}}\left(y_{1}, \ldots, y_{n}\right) \frac{t_{1}^{i_{1}}}{c_{i_{1}}} \cdots \frac{t_{n}^{i_{n}}}{c_{i_{n}}} .
$$

For $c_{n}=n!$, we also obtain a formula for the compositional inverse of a delta set.

Corollary 10. If $p_{i_{1}, \ldots, i_{n}}$ is the associated sequence for a delta set (f_{1}, \ldots, f_{n}), with compositional inverse ($\bar{f}_{1}, \ldots, \bar{f}_{n}$), then if $c_{n}=n$!,

$$
\bar{f}_{j}=\sum_{u=0}^{\infty} \sum_{i_{1}+\cdots+i_{n}=u} \frac{\partial}{\partial i_{j} \geq 0} p_{i_{1}, \ldots, i_{n}}(0, \ldots, 0) \frac{t_{1}^{i_{1}}}{i_{1}!} \cdots \frac{t_{n}^{i_{n}}}{i_{n}!}
$$

Corollary 11. If $p_{i_{1}, \ldots, i_{n}}$ is an associated sequence and if $f, g \in \Lambda$, then

$$
\begin{aligned}
\langle f|\left|p_{i_{1}, \ldots, i_{n}}\right\rangle= & \sum_{u=m}^{i_{1}+\cdots+i_{n}-k} \sum_{i_{1}+\cdots+j_{j}=u} \frac{c_{i_{i}} \cdots c_{i_{n}}}{c_{i_{1}} \cdots c_{j_{n}} c_{i_{1}-i_{1}} \cdots c_{i_{n}-j_{n}}} \\
& \times\left\langle f \mid p_{j_{1}, \ldots, j_{n}}\right\rangle\left\langle g \mid p_{i_{1}-i_{1} \ldots, i_{n}-i_{n}}\right\rangle,
\end{aligned}
$$

where $m=\operatorname{deg} f$ and $k=\operatorname{deg} g$.

The next proposition is proved in a manner similar to the proof of Proposition 3.

Proposition 6. Suppose $p_{i_{1}, \ldots i_{n}}$ is a strong sequence in R, with $\operatorname{deg} p_{i_{1}, \ldots, i_{n}}=i_{1}+\cdots+i_{n}$. If

$$
\begin{aligned}
\left\langle f g \mid p_{i, \ldots, i}\right\rangle= & \sum_{u=m}^{i_{1}+\cdots+i_{n}-k} \sum_{\substack{j_{1}+\cdots+j_{n}=u \\
j_{k} \geqslant 0}} \frac{c_{i_{1}} \cdots c_{i_{n}}}{c_{j_{1}} \cdots c_{j_{n}} c_{i_{1}-j_{1}} \cdots c_{i_{n}-j_{n}}} \\
& \times\left\langle f \mid p_{j_{1}, \ldots, j_{n}}\right\rangle\left\langle g \mid p_{i_{1}-j_{1}, \ldots, i_{n}-j_{n}}\right\rangle
\end{aligned}
$$

for all $f, g \in \Lambda$ with $m=\operatorname{deg} f$ and $k=\operatorname{deg} g$, then $p_{i_{1}, \ldots, i_{n}}$ is an associated sequence.

In the special case that $c_{k}=k$! for $k \geqslant 0$, Corollary 9 allows us to derive the binomial identity in R, namely, if $p_{i_{1}, \ldots, i_{n}}$ is an associated sequence in R, we have

$$
\begin{aligned}
& p_{i_{1}, \ldots, i_{n}}\left(a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right) \\
& \quad \sum_{u=0}^{i_{1}+\cdots+i_{n}} \sum_{j_{1}+\cdots+j_{n}=u}\binom{i_{1}}{j_{1}} \cdots\binom{i_{n}}{j_{n}} p_{j_{1} \ldots, j_{n}}\left(a_{1}, \ldots, a_{n}\right) p_{i_{1}-j_{1}, \ldots, i_{n}-j_{n}}\left(b_{1}, \ldots, b_{n}\right)
\end{aligned}
$$

for all $a_{i}, b_{i} \in K$.
For the algebras Λ and R, the binomial identity is enough to guarantee that a strong sequence $p_{i_{1}, \ldots, i_{n}}$ with $\operatorname{deg} p_{i_{1}, \ldots, i_{n}}=i_{1}+\cdots+i_{n}$ is an associated sequence.

PROPOSITION 7. If $p_{i_{1}, \ldots, i_{n}}$ is a strong sequence in R with $\operatorname{deg} p_{i_{1}, \ldots, i_{n}}=$ $i_{1}+\cdots+i_{n}$ satisfying the binomial identity, then it is an associated sequence.

Proof. We need only verify the hypothesis of Proposition 6. Let $R\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ be the vector space of polynomials in the variables $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$. If $f \in A$, then f induces a linear operator f_{x} on $R\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ as follows. If $p=\sum a_{i_{1}, \ldots, i_{n}, j_{2}, \ldots, j_{n}} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}} y_{1}^{i_{1}} \cdots y_{n}^{i_{n}}$, then

$$
f_{x} p=\sum a_{i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{n}}\left\langle f \mid x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle y_{1}^{j_{1}} \cdots y_{n}^{j_{n}} .
$$

Similarly, the operator f_{y} is defined by

$$
f_{y} p=\sum a_{i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{n}}\left\langle f \mid x_{1}^{j_{1}} \cdots x_{n}^{j_{n}}\right\rangle x_{1}^{i_{1}} \cdots x_{n}^{i_{n}} .
$$

In this notation Proposition 1 becomes

$$
\begin{aligned}
\left\langle f g \mid x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}\right\rangle & =f_{x} g_{y} \sum_{\substack{ }} \sum_{\substack{j_{1}+\cdots+j_{n}=u \\
0 \leq j_{1} \leq k_{1}}}\binom{k_{1}}{j_{1}} \cdots\binom{k_{n}}{j_{n}} x_{1}^{j_{1}} \cdots x_{n}^{j_{n}} y_{1}^{k_{1}-j_{1}} \cdots y_{n}^{k_{n}-j_{n}} \\
& =f_{x} g_{y}\left(x_{1}+y_{1}\right)^{k_{1} \cdots\left(x_{n}+y_{n}\right)^{k_{n}} .}
\end{aligned}
$$

Thus for any $p \in R$, we may write

$$
\langle f g \mid p\rangle=f_{x} g_{y} p\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right) .
$$

Choosing $p=p_{i_{2} \ldots, i_{n}}$ and using the binomial identity gives the result.
The connection-constants problem has a similar solution in R,

Proposmion 8. If $p_{i_{1} \ldots, i_{n}}$ is associated to $\left(f_{1}, \ldots, f_{n}\right)$ and $q_{i_{1}, \ldots, i_{n}}$ is associated to $\left(g_{1}, \ldots, g_{n}\right)$ and if

$$
p_{i_{1}, \ldots, i_{n}}=\sum_{u=0}^{k} \sum_{\substack{j_{1}+\cdots,+j_{n}=j_{n}=u}} a_{j_{1}, \ldots, j_{n}} q_{j_{1}, \ldots, j_{n}}
$$

then the sequence

$$
r_{i_{1}, \ldots, i_{n}}=\sum_{u=0}^{k} \sum_{j_{1}+\cdots+j_{n}=u} a_{j_{1}, \ldots, j_{n}} j_{1}^{j_{1}} \cdots x_{n}^{j_{1}}
$$

is the associated sequence for

$$
\left(f_{1}\left(\bar{g}_{1}, \ldots, \bar{g}_{n}\right), \ldots, f_{n}\left(\bar{g}_{1}, \ldots, \bar{g}_{n}\right)\right) .
$$

The associated sequence of a delta set can be characterized as before.

Theorem 12. A strong sequence $p_{i_{1}, \ldots, i_{n}}$ is the associated sequence for $\left(f_{1}, \ldots, f_{n}\right)$ if and only if
(1) $\left\langle t_{1}^{0} \cdots t_{n}^{0} \mid p_{i_{1} \ldots \ldots . i_{n}}\right\rangle=\delta_{i_{1}, 0} \cdots \delta_{i_{n}, 0}$,
(2) $f_{1}^{j_{1}} \cdots f_{n}^{j_{n}} p_{i_{1}, \ldots, i_{n}}=\frac{c_{i_{1}} \cdots c_{i_{n}}}{c_{i_{1}-j_{1}} \cdots c_{i_{n}-j_{n}}} p_{i_{1}-j_{1}, \ldots, i_{n}-j_{n}} \quad$ for $j_{k} \leqslant i_{k}$, $k=1, \ldots, n$.

Corollary 12. If $p_{i_{1}, \ldots, i_{n}}$ is an associated sequence, then for $f \in \Gamma$ we have

$$
\begin{aligned}
\left\langle f \mid p_{i_{1}, \ldots, i_{n}}\right\rangle= & \sum_{u=m}^{\infty} \sum_{\substack{j_{1}+\cdots+j_{j}=u \\
j_{i} \geqslant 0}} \frac{c_{i_{1}} \cdots c_{i_{n}}}{c_{j_{1}} \cdots c_{j_{n}} c_{i_{1}-j_{1}} \cdots c_{i_{n}-j_{n}}} \\
& \times\left\langle f \mid p_{j_{1}, \ldots, j_{n}}\right\rangle p_{i_{1}-j_{1}, \ldots, i_{n}-j_{n}}
\end{aligned}
$$

Finally, we remark that the notion and properties of the Sheffer sequence in R are analogous to those in P.

11. The Transfer Formula for Delta Sets

The most elementary delta sets are of the form

$$
f_{i}=a_{i, 1} t_{1}+\cdots+a_{i, n} t_{n}
$$

where $\operatorname{det}\left(a_{i, j}\right) \neq 0$. If $\left(b_{i, j}\right)$ is the inverse matrix to $\left(a_{i, j}\right)$, then

$$
\bar{f}_{i}=b_{i, 1} t_{1}+\cdots+b_{i, n} t_{n}
$$

The associated sequence $p_{i_{1}, \ldots, i_{n}}$ for $\left(f_{1}, \ldots, f_{n}\right)$ is the conjugate sequence for $\left(f_{1}, \ldots, f_{n}\right)$ and so

$$
\begin{aligned}
p_{i_{1}, \ldots, i_{n}} & =\sum_{u=0}^{i_{1}+\cdots+i_{n}} \sum_{\substack{j_{1}+\cdots+j_{n}=u \\
j_{i} \geqslant 0}} \frac{\left.\left\langle\bar{f}_{1}^{j_{1}} \cdots \bar{f}_{n}^{j_{n}}\right| x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right)}{c_{j_{1}} \cdots c_{j_{n}}} x_{1}^{j_{1}} \cdots x_{n}^{j_{n}} \\
& =\sum_{\substack{j_{1}+\cdots+j_{n} \leqslant i_{1}+\cdots+i_{n} \\
j_{i} \geqslant 0}} \frac{\left\langle\bar{f}_{1}^{j_{1}} \cdots \bar{f}_{n}^{j_{n}} \mid x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle}{c_{j_{1}} \cdots c_{j_{n}}} x_{1}^{j_{1}} \cdots x_{n}^{j_{n}} .
\end{aligned}
$$

In the special case where $c_{k}=k$! for all $k \geqslant 0$, we can simplify this considerably. We have

$$
\begin{aligned}
\bar{f}_{i}^{j_{i}} & =\left(b_{i, 1} t_{1}+\cdots+b_{i, n} t_{n}\right)^{j_{i}} \\
& =\sum_{u_{1}{ }^{i}+\cdots+u_{n}^{i}=j_{i}}\binom{j_{i}}{u_{1}^{i}, \ldots, u_{n}^{i}}\left(b_{i, 1} t_{1}\right)^{u_{1}^{i}} \cdots\left(b_{i, n} t_{n}\right)^{u_{n}^{i}}
\end{aligned}
$$

so

$$
\begin{aligned}
f_{1}^{j_{1}} \cdots f_{n}^{j_{n}}= & \sum_{\substack{u_{1}{ }^{1}+\cdots+u_{n}{ }^{1}=f_{1}}}\binom{j_{1}}{u_{1}^{1}, \ldots, u_{n}{ }^{1}} \cdots\binom{j_{n}}{u_{1}{ }^{n}, \ldots, u_{n}{ }^{n}} \\
& u_{1}{ }^{n}+\cdots+u_{n}{ }^{n}=j_{n} \\
& \times\left(b_{1,1}^{u_{1}{ }^{1} \cdots} b_{1, n}^{u_{n}{ }^{1}}\right) \cdots\left(b_{n, 1}^{u_{1}{ }^{n}} \cdots b_{n, n}^{u_{n}{ }^{n}}\right) t_{1}^{u_{1}{ }^{1}+\cdots+u_{1}{ }^{n}} \cdots t_{n}^{u_{n}{ }^{1}+\cdots+u_{n}{ }^{n}}
\end{aligned}
$$

Applying this to $x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}$ we must have

$$
\begin{gathered}
i_{1}=u_{1}^{1}+\cdots+u_{1}^{n} \\
\vdots \\
i_{n}=u_{n}^{1}+\cdots+u_{n}^{n}
\end{gathered}
$$

as well as

$$
j_{1}+\cdots+j_{n}=i_{1}+\cdots+i_{n}
$$

Thus we obtain

$$
\begin{aligned}
& \frac{\left\langle\bar{f}_{1}^{j_{1}} \cdots \bar{f}_{n}^{j_{n}} \mid x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle}{j_{1}!\cdots j_{n}!} \\
& =\frac{i_{1}!\cdots i_{n}!}{j_{1}!\cdots j_{n}!} \sum_{u_{1}{ }^{1}+\cdots+u_{n}{ }^{3}=j_{1}}\binom{j_{1}}{u_{1}{ }^{1}, \ldots, u_{n}{ }^{1}} \cdots\binom{j_{n}}{u_{1}{ }^{n}, \ldots, u_{n}{ }^{n}} \\
& \begin{array}{lc}
+ & \vdots \\
\vdots & \vdots \\
+ & + \\
u_{1}{ }^{n}+\cdots+u_{n}{ }^{n}=i_{n} \\
\vdots \\
i_{1} & i_{n}
\end{array} \\
& \times b_{1,1}^{u_{1}{ }^{\mathbf{1}}} \cdots b_{1, n}^{u_{n}{ }^{1}} \cdots b_{n, 1}^{u_{1}{ }^{n}} \cdots b_{n, n}^{u_{n}{ }^{n}}
\end{aligned}
$$

and

$$
\begin{aligned}
& p_{i_{1}, \ldots, i_{n}}=\sum_{\substack{j_{1}+\cdots+j_{n}=i_{1}+\cdots+i_{n} \\
i_{i} \geqslant 0}} \frac{\left\langle\bar{f}_{1}^{j_{1}} \cdots \bar{f}_{n}^{j_{n}} \mid x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle}{j_{1}!\cdots j_{n}!} x_{1}^{j_{1}} \cdots x_{n}^{j_{n}}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{u_{1}^{1}+\cdots+u_{1}^{n}=i_{1}}\binom{i_{2}}{u^{1}, \ldots, u^{n}} \cdots\binom{i_{n}}{u_{n}^{1}, \ldots, u_{n}^{n}} \\
& u_{n}{ }^{1}+\cdots+u_{n}{ }^{n}=l_{n} \\
& \times\left(b_{1,1} x_{1}\right)^{u_{1}{ }_{1}} \cdots\left(b_{n, 1} x_{n}\right)^{u_{1}{ }^{n}} \cdots\left(b_{1, n} x_{1}\right)^{u_{n}{ }^{1}} \cdots\left(b_{n, n} x_{n}\right)^{u_{n}{ }^{n}} \\
& =\left(b_{1,1} x_{1}+\cdots+b_{n, 1} x_{n}\right)^{i_{1}} \cdots\left(b_{1, n} x_{1}+\cdots+b_{n, n} x_{n}\right)^{i_{n}} .
\end{aligned}
$$

We have proved
Proposition 9. Let $\left(f_{1}, \ldots, f_{n}\right)$ be the delta set given by

$$
f_{i}=a_{i, 1} t_{1}+\cdots+a_{i, n} t_{n}
$$

for $i=1, \ldots, n$. Let $\left(b_{i, j}\right)=\left(a_{i, j}\right)^{-1}$. Then in the special case $c_{k}=k!$ for all nonnegative integers k the associated sequence to $\left(f_{1}, \ldots, f_{n}\right)$ is

$$
p_{i_{1}, \ldots, i_{n}}=\left(b_{1,1} x_{1}+\cdots+b_{n, 1} x_{n}\right)^{i_{1}} \cdots\left(b_{1, n} x_{1}+\cdots+b_{n, n} x_{n}\right)^{i_{n}}
$$

If $f \in \Lambda$ is of the form

$$
f=a_{1} t_{1}+\cdots+a_{n} t_{n}+g
$$

where $g=0$ or g is a power series of degree two, we call

$$
\mathscr{L}(f)=a_{1} t_{1}+\cdots+a_{n} t_{n}
$$

the linear part of f.
Theorem 13 (Transfer Formula). Let $\left(f_{1}, \ldots, f_{n}\right)$ be a delta set, with $f_{i}=\mathscr{L}\left(f_{i}\right)+g_{i}$. Then the associated sequence for $\left(f_{1}, \ldots, f_{n}\right)$ is

$$
\begin{aligned}
p_{i_{1} \ldots, i_{n}}= & \sum_{k_{1}, \ldots, k_{n} \geqslant 0}^{k_{j} \leqslant i_{j}} \frac{c_{i_{1}} \cdots c_{i_{n}}}{c_{i_{1}+k_{1}} \cdots c_{i_{n}+k_{n}}} \operatorname{det}\left(a_{i, j}\right)^{-1} \partial\left(f_{1}, \ldots, f_{n}\right) \\
& \times\binom{-1-i_{1}}{k_{2}} \cdots\binom{-1-i_{n}}{k_{n}} g_{1}^{k_{1} \cdots g_{n}^{k_{n}} r_{i_{1}+k_{1}, \ldots, i_{n}+k_{n}},}
\end{aligned}
$$

where $r_{j_{1}, \ldots, j_{n}}$ is the associated sequence for the delta set $\left(\mathscr{L}\left(f_{1}\right), \ldots, \mathscr{L}\left(f_{n}\right)\right)$.
Proof. Suppose

$$
f_{i}=a_{i, 1} t_{1}+\cdots+a_{i, n} t_{n}+g_{i}=\mathscr{L}\left(f_{i}\right)+g_{i}
$$

Let μ be the continuous automorphism of Λ defined by

$$
\mu \mathscr{L}\left(f_{i}\right)=t_{i}
$$

for $i=1, \ldots, n$. Then the set $\left(\mu f_{1}, \ldots, \mu f_{n}\right)$ is a diagonal delta set. Therefore, it has an associated sequence in P given by Theorem 6,

$$
q_{i_{1}, \ldots, i_{n}}=\frac{c_{i_{1}} \cdots c_{i_{n}}}{c_{-1}^{n}} \partial\left(\mu f_{1}, \ldots, \mu f_{n}\right)\left(\mu f_{n}\right)^{-1-i_{1}} \cdots\left(\mu f_{n}\right)^{-1-i_{n}} x_{1}^{-1} \cdots x_{n}^{-1}
$$

where the action is of the type described in Section 6.

Now

$$
\left\langle\left(\mu f_{1}\right)^{j_{1}} \cdots\left(\mu f_{n}\right)^{i_{n}} \mid q_{i_{1} \ldots \ldots i_{n}}\right\rangle=c_{i_{1}} \cdots c_{i_{n}} \delta_{i_{1}, j_{1}} \cdots \delta_{i_{n}, j_{n}}
$$

for all integers $j_{i} \geqslant 0$, but any terms in $q_{i_{1}, \ldots, i_{n}}$ with negative exponents contribute nothing to this action whenever $j_{i} \geqslant 0$. Therefore, if we write $\tilde{q}_{i_{1}, \ldots, i_{1}}$ to denote $q_{i_{1}, \ldots, i_{n}}$ with all terms containing negative exponents removed, we obtain

$$
\left\langle\left(\mu f_{1}\right)^{j_{1}} \cdots\left(\mu f_{n}\right)^{j_{n}} \mid \tilde{q}_{i_{1}, \ldots, i_{n}}\right\rangle=c_{i_{1}} \cdots c_{i_{n}} \delta_{i_{1}, j_{1}} \cdots \delta_{i_{n}, i_{n}}
$$

for all integers $j_{i} \geqslant 0$. Moreover, we have

$$
\begin{aligned}
\left\langle f_{1}^{j_{1}} \cdots f_{n}^{j_{n}} \mid \mu^{*} \tilde{q}_{i_{1}, \ldots, i_{n}}\right\rangle & =\left\langle\mu f_{1}^{j_{1}} \cdots f_{n}^{j_{n}} \mid \tilde{q}_{i_{1}, \ldots, i_{n}}\right\rangle \\
& =\left\langle\left(\mu f_{1}\right)^{j_{1}} \cdots\left(\mu f_{n}\right)^{j_{n}} \mid \tilde{q}_{i_{1}, \ldots, i_{n}}\right\rangle \\
& =c_{i_{1}} \cdots c_{i_{n}} \delta_{i_{1}, j_{1}} \cdots \delta_{i_{n}, j_{n}}
\end{aligned}
$$

and so $\mu^{*} \tilde{q}_{i_{1}}, \ldots, i_{n}$ is the associated sequence for $\left(f_{1}, \ldots, f_{n}\right)$.
Now $\mu f_{j}=t_{j}+\mu g_{j}$, where $\mu g_{j}=0$ or μg_{j} is a power series of degree at least two. Therefore, thinking of μf_{j} as being in P, we have

$$
\left(\mu f_{j}\right)^{-1-i_{j}}=\sum_{k_{j} \geqslant 0}\binom{-1-i_{j}}{k_{j}} t_{j}^{-1-i_{j}-k_{j}}\left(\mu g_{j}\right)^{k_{j}}
$$

and so

$$
\begin{aligned}
q_{i_{1}, \ldots, i_{n}}= & \frac{c_{i_{1}, \ldots, c_{i_{n}}}^{c_{-1}^{n}} \partial\left(\mu f_{1}, \ldots, \mu f_{n}\right) \sum_{k_{1}, \ldots, k_{n} \geqslant 0}\binom{-1-i_{1}}{k_{1}} \cdots\binom{-1-i_{n}}{k_{n}}}{} \\
& \times t_{1}^{-1-i_{1}-k_{1}} \cdots t_{n}^{-1-i_{n}-k_{n}}\left(\mu g_{1}\right)^{k_{1}} \cdots\left(\mu g_{n}\right)^{k_{n}} x_{1}^{-1} \cdots x_{n}^{-1} \\
= & \sum_{k_{1}, \ldots, k_{n} \geqslant 0} \frac{c_{i_{1}} \cdots c_{i_{n}}}{c_{i_{1}+k_{1}} \cdots c_{i_{n}+k_{n}}} \partial\left(\mu f_{1}, \ldots, \mu f_{n}\right)\binom{-1-i_{1}}{k_{1}} \cdots\binom{-1-i_{n}}{k_{n}} \\
& \times\left(\mu g_{1}\right)^{k_{1}} \cdots\left(\mu g_{n}\right)^{k_{n}} x_{1}^{i_{1}+k_{1}} \cdots x_{n}^{i_{n}+k_{n}},
\end{aligned}
$$

where the action is that of Section 6. It is easy to see that

$$
\begin{aligned}
\tilde{q}_{i_{1}, \ldots . i_{n}}= & \sum_{k_{1}, \ldots, k_{n} \geqslant 0}^{k_{j} \leqslant i_{j}} \frac{c_{i_{1}} \cdots c_{i_{n}}}{c_{i_{1}+k_{1}} \cdots c_{i_{n}+k_{n}}} \partial\left(\mu f_{1}, \ldots, \mu f_{n}\right)\binom{-1-i_{1}}{k_{1}} \cdots\binom{-1-i_{n}}{k_{n}} \\
& \times\left(\mu g_{1}\right)^{k_{1} \cdots\left(\mu g_{n}\right)^{k_{n}} x_{1}^{i_{1}+k_{1}} \cdots x_{n}^{i_{n}+k_{n}}}
\end{aligned}
$$

where now the action is the one of Λ on R described in this section.

We are left with computing $\mu^{*} \tilde{q}_{i_{1}, \ldots, i_{n}}$. If $g \in \Lambda$, then

$$
\begin{aligned}
\left\langle t_{1}^{i_{1}} \cdots t_{n}^{i_{n}} \mid \mu^{*} g x_{1}^{j_{1}} \cdots x_{n}^{i_{n}}\right\rangle & =\left\langle\mu t_{1}^{i_{1}} \cdots t_{n}^{i_{n}} \mid g x_{1}^{i_{1}} \cdots x_{n}^{j_{n}}\right\rangle \\
& =\left\langle g \mu t_{1}^{i_{1}} \cdots t_{n}^{i_{n}} \mid x_{1}^{j_{1}} \cdots x_{n}^{j_{n}}\right\rangle \\
& =\left\langle\mu\left[\left(\mu^{-1} g\right) t_{1}^{i_{1}} \cdots t_{n}^{i_{n}}\right] \mid x^{j_{1}} \cdots x_{n}^{j_{n}}\right\rangle \\
& =\left\langle\left(\mu^{-1} g\right) t_{1}^{i_{1}} \cdots t_{n}^{i_{n}} \mid \mu^{*} x_{1}^{j_{1}} \cdots x_{n}^{j_{n}}\right\rangle \\
& =\left\langle t_{1}^{i_{1}} \cdots t_{n}^{i_{n}} \mid \mu^{-1} g \mu^{*} x_{1}^{j_{1}} \cdots x_{n}^{j_{n}}\right\rangle
\end{aligned}
$$

and so

$$
\mu^{*} g x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}=\mu^{-1} g \mu^{*} x_{1}^{j_{1}} \cdots x_{n}^{i_{n}} .
$$

Finally, since

$$
\mu^{-1} \partial\left(\mu f_{1}, \ldots, \mu f_{n}\right)=\operatorname{det}\left(a_{i, j}\right)^{-1} \partial\left(f_{1}, \ldots, f_{n}\right)
$$

we have

$$
\begin{aligned}
\mu^{*} \tilde{q}_{i_{1}, \ldots, i_{n}}= & \sum_{k_{1}, \ldots, k_{n} \geqslant 0}^{k_{j} \leqslant i_{j}} \frac{c_{i_{1}} \cdots c_{i_{n}}}{c_{i_{1}+k_{1}} \cdots c_{i_{n}+k_{n}}} \operatorname{det}\left(a_{i, j}\right)^{-1} \partial\left(f_{1}, \ldots, f_{n}\right) \\
& \times\binom{-1-i_{n}}{k_{n}} \cdots\binom{-1-i_{n}}{k_{n}} g_{1}^{k_{1}} \cdots g_{n}^{k_{n}} \mu^{*} x_{1}^{i_{1}+k_{1}} \cdots x_{n}^{i_{n}+k_{n}},
\end{aligned}
$$

where $\mu^{*} x_{1}^{j_{1}} \cdots x_{n}^{j_{n}}$ is the associated sequence for $\left(\mathscr{L}\left(f_{1}\right), \ldots, \mathscr{L}\left(f_{n}\right)\right)$.

12. The Recurrence Formula

In this section we derive a useful recurrence formula for the associated sequence of a delta set.

If $p_{i_{1}, \ldots, i_{n}}$ is the associated sequence for a delta set $\left(f_{1}, \ldots, f_{n}\right)$ we define the shift operators associated with $p_{i_{1}, \ldots, i_{n}}$ (or with $\left(f_{1}, \ldots, f_{n}\right)$) as the set of operators denoted by $\left(\theta_{f_{1}}, \ldots, \theta_{f_{n}}\right)$, where each $\theta_{f_{j}}$ is the continuous linear operator on R with

$$
\theta_{f_{j}} p_{i_{1}, \ldots, i_{n}}=\frac{\left(i_{j}+1\right) c_{i_{j}}}{c_{i_{j+1}}} p_{i_{1} \ldots, i_{j-1}, i_{j}+1, i_{j+1}, \ldots, i_{n}} .
$$

Theorem 14. The set of continuous linear operators $\left(w_{1}, \ldots, w_{n}\right)$ on R is a set of shift operators if and only if the set of adjoints $\left(w_{1}^{*}, \ldots, w_{n}^{*}\right)$ defined
on Λ has the property that each w_{j}^{*} is a continuous, everywhere defined derivation of Λ and there exists some delta set $\left(f_{1}, \ldots, f_{n}\right)$ for which $w_{j}^{*} f_{i}=\delta_{i, j}$.

Proof. Suppose $\left(w_{1}, \ldots, w_{n}\right)$ is the set of shift operators associated with the delta set $\left(f_{1}, \ldots, f_{n}\right)$. Then

$$
\begin{aligned}
\left\langle w_{j}^{*} f_{1}^{k_{1}} \cdots f_{n}^{k_{n}} \mid p_{i_{1}, \ldots, i_{n}}\right\rangle & =\left\langle f_{1}^{k_{1}} \cdots f_{n}^{k_{n}} \left\lvert\, \frac{\left(i_{j+1}\right) c_{i_{j}}}{c_{i_{j+1}}} p_{i_{1}, \ldots, i_{j}+1, \ldots, i_{n}}\right.\right\rangle \\
& =\left(i_{j}+1\right) c_{i_{1}} \cdots c_{i_{n}} \delta_{i_{1}, k_{1}} \cdots \delta_{i_{j}+1, k_{j}} \cdots \delta_{i_{n}, k_{n}} \\
& =\left\langle k_{j} f_{1}^{k_{1}} \cdots f_{j}^{k_{j}-1} \cdots f_{n}^{k_{n}} \mid p_{i_{1}, \ldots, i_{n}}\right\rangle
\end{aligned}
$$

and so $w_{j}^{*} f_{1}^{k_{1}} \cdots f_{n}^{k_{n}}=k_{j} f_{1}^{k_{1}} \cdots f_{j}^{k_{j}-1} \cdots f_{n}^{k_{n}}$. Since w_{j} is continuous, so is w_{j}^{*} and thus $w_{j}^{*}=\partial / \partial f_{j}$ is a continuous, everywhere defined derivation on Λ. Also, it is clear that $w_{3}^{*} f_{i}=\delta_{i, j}$.
For the converse, suppose ($w_{1}^{*}, \ldots, w_{n}^{*}$) is a set of continuous, everywhere defined derivations on Λ, and $w_{3}^{*} f_{i}=\delta_{i, j}$ for the delta set (f_{1}, \ldots, f_{n}). Then if $p_{i_{1} \ldots \ldots, i_{n}}$ is the associated sequence for $\left(f_{1}, \ldots, f_{n}\right)$ we have

$$
\begin{aligned}
\left\langle f_{1}^{k_{1}} \cdots f_{n}^{k_{n}} \mid w_{j} p_{i_{1}, \ldots, i_{n}}\right\rangle & =\left\langle k_{j_{j}} f_{1}^{k_{1}} \cdots f_{j}^{k_{j}-1} \cdots f_{n}^{k_{n}} \mid p_{i_{1}, \ldots, i_{n}}\right\rangle \\
& =\left\langle f_{1}^{k_{1}} \cdots f_{n}^{k_{n}} \left\lvert\, \frac{\left(i_{j}+1\right) c_{i_{j}}}{c_{i_{j}+1}} p_{i_{1} \ldots, i_{j}+1 \ldots . i_{n}}\right.\right\rangle
\end{aligned}
$$

and so by the spanning argument

$$
w_{i} p_{i_{1}, \ldots, i_{n}}=\frac{\left(i_{j}+1\right) c_{i_{j}}}{c_{i_{j}+1}} p_{i_{1} \ldots ., i_{j}+1 . \ldots i_{n}}
$$

and since w_{j} is continuous, we conclude that $\left(w_{j}, \ldots, w_{n}\right)$ is the set of shift operators for $\left(f_{1}, \ldots, f_{n}\right)$.

The chain rule for these derivations is easily established.
Proposition 10. If $\left(\theta_{f_{1}}, \ldots, \theta_{f_{n}}\right)$ and $\left(\theta_{g_{1}}, \ldots, \theta_{g_{n}}\right)$ are sets of shift operators, then

$$
\theta_{f_{j}}^{*}=\sum_{i=1}^{n}\left(\theta_{f_{j}}^{*} g_{i}\right) \theta_{y_{i}}^{*} .
$$

Proof. This follows from the fact that $\theta_{f_{j}}^{*}$ is a continuous derivation, that any element of Λ can be written as a convergent sum in terms of the form $g_{1}^{k_{1}} \cdots g_{n}^{k_{n}}$, and that

$$
\theta_{f_{j}}^{*} g_{k}=\sum_{i=1}^{n}\left(\theta_{f_{j}}^{*} g_{i}\right) \theta_{g_{i}}^{*} g_{k}
$$

We can now express one set of shift operators in terms of another.

Theorem 15. If $\left(\theta_{f_{1}}, \ldots, \theta_{f_{n}}\right)$ and $\left(\theta_{g_{1}}, \ldots, \theta_{g_{n}}\right)$ are sets of shift operators, then

$$
\theta_{f_{j}}=\sum_{i=1}^{n} \theta_{g_{i}}\left(\theta_{f_{j}}^{*} g_{i}\right) .
$$

Proof. If $p \in R$ and $h \in \Lambda$ we have

$$
\begin{aligned}
\left\langle h \mid \theta_{f_{h}} p\right\rangle & =\left\langle\theta_{f_{h}}^{*} h \mid p\right\rangle \\
& =\left\langle\sum_{i=1}^{n}\left(\theta_{g_{i}}^{*} h\right)\left(\theta_{f_{h}}^{*} g_{i}\right) \mid p\right\rangle \\
& =\sum_{i=1}^{n}\left\langle\theta_{g_{i}}^{*} h \mid\left(\theta_{f_{h}}^{*} g_{i}\right) p\right\rangle \\
& =\sum_{i=1}^{n}\left\langle h \mid \theta_{g_{i}}\left(\theta_{f_{h}}^{*} g_{i}\right) p\right\rangle \\
& =\left\langle h \mid \sum_{i=1}^{n} \theta_{g_{i}}\left(\theta_{f_{h}}^{*} g_{i}\right) p\right\rangle
\end{aligned}
$$

and the result follows from the spanning argument.
Corollary 13 (Recurrence Formula). If $\left(\theta_{f_{1}}, \ldots, \theta_{f_{n}}\right)$ and $\left(\theta_{g_{1}}, \ldots, \theta_{g_{n}}\right)$ are sets of shift operators and if $\left(f_{1}, \ldots, f_{n}\right)$ has associated sequence $p_{i_{1}}, \ldots, i_{n}$, then

$$
\frac{\left(i_{j}+1\right) c_{i_{j}}}{c_{i_{j}+1}} p_{i_{1}, \ldots, i_{j+1}, \ldots, i_{n}}=\sum_{i=1}^{n} \theta_{g_{i}}\left(\theta_{f_{j}}^{*} g_{i}\right) p_{i_{1}, \ldots, i_{n}}
$$

The most useful version of the Recurrence Formula is for $c_{k}=k!$ for all $k \geqslant 0$ and $g_{i}=t_{i}$ for $i=1, \ldots, n$. Then $\theta_{t_{i}}$ is multiplication by x_{i} and we have

Corollary 14 (Recurrence Formula). In the case $c_{k}=k$!, for all $k \geqslant 0$, if $\left(\theta_{f_{1}}, \ldots, \theta_{f_{n}}\right)$ is a set of shift operators and if $\left(f_{1}, \ldots, f_{n}\right)$ has associated sequence $p_{i_{1}, \ldots, i_{n}}$, then

$$
p_{i_{1}, \ldots, i_{j}+1, \ldots, i_{n}}=\sum_{i=1}^{n} x_{i}\left(\frac{\partial t_{i}}{\partial f_{j}}\right) p_{i_{1}, \ldots, i_{n}}
$$

where $\partial t_{i} / \partial f_{j}=\theta_{f_{j}}^{*} t_{i}$.

13. Examples and Applications

We will compute the associated and conjugate sequences for some classical examples. We will restrict our attention only to the algebras Λ and R, preferring to leave other examples to a forthcoming paper.
Most of the classical examples arise from the special case where $c_{k}=k$! for all $k \geqslant 0$. However, it should be noted that this is not the only important case. In particular, the case $c_{k}=1$ for all $k \geqslant 0$ leads to some very interesting results, but we must postpone a discussion of these.

For the most part our examples consist of delta sets $\left(f_{1}, \ldots, f_{n}\right)$ in which

$$
f_{j}=\mathscr{L}_{i} h\left(\mathscr{L}_{j}\right)
$$

where $\mathscr{L}_{j}=\mathscr{L}\left(f_{j}\right)$ is the linear part of f_{j} and where $h=h(T)$ is a power series in the variable T which has nonzero constant term. In this situation we may greatly simplify the Transfer Formula.

First, let us recall that the sequence $r_{j_{1}, \ldots, j_{n}}$ was defined as the associated sequence for the delta set ($\mathscr{L}_{1}, \ldots, \mathscr{L}_{n}$). Moreover, we saw that (since $c_{k}=k$!)

$$
r_{i_{1}, \ldots, i_{n}}=\left(b_{1,1} x_{1}+\cdots+b_{i n,} x_{n}\right)^{i_{1}} \cdots\left(b_{n, 1} x_{1}+\cdots+b_{n, n} x_{n}\right)^{i_{n}}
$$

If we write

$$
r_{j}=b_{j, 1} x_{1}+\cdots+b_{j, n} x_{n},
$$

then

$$
r_{i_{1}, \ldots, i_{n}}=r_{1}^{i_{1}} \cdots r_{n}^{i_{n}}
$$

and

$$
\begin{aligned}
\mathscr{L}_{j} r_{1}^{i_{1}} \cdots r_{n}^{i_{n}} & =\mathscr{L}_{j} r_{i_{1} \ldots \ldots i_{n}} \\
& =i_{j} r_{i_{1} \ldots ., i_{j}-1 \ldots ., i_{n}} \\
& =r_{1}^{i_{1}} \cdots\left(i_{j} r_{j}^{i_{j}-1}\right) \cdots r_{n}^{i_{n}} \\
& =r_{1}^{i_{1}} \cdots\left(\mathscr{L}_{j} r_{j}^{i_{j}}\right) \cdots r_{n}^{i_{n}} .
\end{aligned}
$$

Let us consider the Transfer Formula in this setting. First we have

$$
\frac{\partial f_{j}}{\partial t_{i}}=\frac{\partial \mathscr{L}_{j}}{\partial t_{i}} h\left(\mathscr{L}_{j}\right)+\mathscr{L}_{j} h^{\prime}\left(\mathscr{L}_{j}\right) \frac{\partial \mathscr{L}_{j}}{\mathscr{L} t_{i}}=a_{j, i}\left(h\left(\mathscr{L}_{j}\right)+\mathscr{L}_{j} h^{\prime}\left(\mathscr{L}_{j}\right)\right)
$$

and so

$$
\partial\left(f_{1}, \ldots, f_{n}\right)=\left(\operatorname{det} a_{j, i} \prod_{j=1}^{n}\left(h\left(\mathscr{L}_{j}\right)+\mathscr{L}_{j} h^{\prime}\left(\mathscr{L}_{j}\right)\right) .\right.
$$

Also, since

$$
f_{i}=\mathscr{L}_{j}+g_{j}=\mathscr{L}_{j} h\left(\mathscr{L}_{j}\right),
$$

we see that

$$
g_{j}^{k_{j}}=(T h-T)^{k_{j}}\left(\mathscr{L}_{j}\right) .
$$

Finally,

$$
\frac{c_{i_{j}}}{c_{i_{j}+k_{j}}}\binom{-1-i_{j}}{k_{j}}=\frac{(-1)^{k_{j}}}{k_{j}!}
$$

and

$$
\begin{aligned}
\sum_{k_{j}=0}^{i_{j}} & \frac{(-1)^{k_{j}}}{k_{j}!}\left(h\left(\mathscr{L}_{j}\right)+\mathscr{L}_{j} h^{\prime}\left(\mathscr{L}_{j}\right)\right)(T h-T)^{k_{j}}\left(\mathscr{L}_{j}\right) r_{j}^{i_{j}+k_{j}} \\
& =\left(h\left(\mathscr{L}_{j}\right)+\mathscr{L}_{j} h^{\prime}\left(\mathscr{L}_{j}\right)\right) \sum_{k_{j}=0}^{i_{j}} \frac{(-1)^{k_{j}}}{k_{j}!}\left(\frac{T h-T}{T}\right)^{k_{j}}\left(\mathscr{L}_{j}\right) \mathscr{L}_{j}^{k_{j}} r_{j}^{i_{j}+k_{j}} \\
& \left.=\left(h\left(\mathscr{L}_{j}\right)+\mathscr{L}_{j} h^{\prime}\left(\mathscr{L}_{j}\right)\right) \sum_{k_{j}=0}^{i} \frac{(-1)^{k_{j}}}{k_{j}!}(h-1)^{k_{j}}\left(\mathscr{L}_{j}\right)\left(i_{j}+k_{j}\right)\right)_{k_{j}} r_{j}^{i_{j}} \\
& =\left(h\left(\mathscr{L}_{j}\right)+\mathscr{L}_{j} h^{\prime}\left(\mathscr{L}_{j}\right)\right) \sum_{h_{j}=0}^{\infty}\left(-1-i_{j}\right)(h-1)^{k_{j}}\left(\mathscr{L}_{j}\right) r_{j}^{i_{j}} \\
& =\left(h\left(\mathscr{L}_{j}\right)+\mathscr{L}_{j} h^{\prime}\left(\mathscr{L}_{j}\right)\right) h^{-1-i_{j}}\left(\mathscr{L}_{j}\right) r_{j}^{i_{j}},
\end{aligned}
$$

where $h^{-1-i_{j}}$ is a power series in T with nonzero constant term. We may write this suggestively as

$$
\frac{\partial f_{j}}{\partial \mathscr{L}_{j}} h^{-1-i_{j}\left(\mathscr{L}_{j}\right) r_{j}^{i_{j}} .}
$$

However, there is yet another useful form. It is easy to verify that if f is any power series in T, then

$$
f^{\prime}\left(\mathscr{L}_{j}\right) r_{j}^{i}=\left[f\left(\mathscr{L}_{j}\right) r_{j}-r_{j} f\left(\mathscr{L}_{j}\right)\right] r_{j}{ }^{i} .
$$

Therefore, we have

$$
\begin{aligned}
{\left[h\left(\mathscr{L}_{j}\right)\right.} & \left.+\mathscr{L}_{j} h^{\prime}\left(\mathscr{L}_{j}\right)\right] h^{-1-i_{j}}\left(\mathscr{L}_{j}\right) r_{j}^{i_{j}} \\
= & h^{-i_{j}}\left(\mathscr{L}_{j}\right) r^{i_{j}}-i_{j} h^{\prime}\left(\mathscr{L}_{j}\right) h^{-1-i_{j}}\left(\mathscr{L}_{j}\right) r^{i_{j}-1} \\
= & h^{-i_{j}}\left(\mathscr{L}_{j}\right) r_{j}^{i_{j}}-\left(h^{-i_{j}}\right)^{\prime}\left(\mathscr{L}_{j}\right) r_{j}^{i_{j}-1} \\
= & h^{-i_{j}}\left(\mathscr{L}_{j}\right) r_{j}^{i_{j}}-\left[h^{-i j_{j}}\left(\mathscr{L}_{j}\right) r_{j}-r_{j} h^{-i_{j}}\left(\mathscr{L}_{j}\right)\right] r_{j}^{i_{j}-1} \\
= & r_{j} h^{-i_{j}}\left(\mathscr{L}_{j}\right) r_{j}^{-i_{j}-1}
\end{aligned}
$$

We summarize our results in

ThEOREM 16. Let $\left(f_{1}, \ldots, f_{n}\right)$ be a delta set with

$$
f_{j}=\mathscr{L}_{j} h\left(\mathscr{L}_{j}\right)
$$

for some power series $h=h(T)$ with nonzero constant term and where $\mathscr{L}_{j}=\mathscr{L}\left(f_{j}\right)$ is the linear part of f_{j}. Then in the case $c_{k}=k!$ for all $k \geqslant 0$, the associated sequence $p_{i_{1}, \ldots, i_{n}}$ for $\left(f_{1}, \ldots, f_{n}\right)$ is given by
(1) $p_{i_{1}, \ldots, i_{n}}=\prod_{j=1}^{n}\left(h\left(\mathscr{L}_{j}\right)+\mathscr{L}_{j} h^{\prime}\left(\mathscr{L}_{j}\right)\right) h^{-1-i_{j}}\left(\mathscr{L}_{j}\right) r_{j}^{i_{j}}$,
(2) $p_{i_{1}, \ldots, i_{n}}=\prod_{j=1}^{n} r_{j} h^{-i_{j}}\left(\mathscr{L}_{j}\right) r_{j}^{i_{j}-1}$,
where

$$
r_{j}^{i}=\left(b_{i, j} x_{1}+\cdots+b_{n, j} x_{n}\right)^{i}
$$

with $\left(b_{i, j}\right)^{-1}=\partial\left(\mathscr{L}_{1}, \ldots, \mathscr{L}_{n}\right)$ and

$$
\mathscr{L}_{j} r_{j}^{i}=i r_{j}^{i-1}
$$

We remark that a similar result holds if $\left(f_{1}, \ldots, f_{n}\right)$ is of the form

$$
f_{j}=\mathscr{L}_{j} h_{j}\left(\mathscr{L}_{j}\right)
$$

where h_{j} is a power series in T with nonzero constant term for each $j=1, \ldots, n$.
We are now ready to begin our examples.
(1) The forward difference delta set is defined by

$$
\begin{aligned}
f_{j} & =e^{a_{j, 1} t_{1}+\cdots+a_{i, n} t_{n}}-1 \\
& =e^{\mathscr{L}_{i}}-1
\end{aligned}
$$

To compute the associated sequence we use the Recurrence Formula. We have

$$
\mathscr{L}_{j}=\log \left(1+f_{j}\right)
$$

and

$$
\frac{\partial t_{i}}{\partial f_{j}}=b_{i, j} e^{-\mathscr{L}_{i}}
$$

where $\left(b_{i, j}\right)=\left(a_{i, j}\right)^{-1}$. The Recurrence Formula then gives

$$
\begin{aligned}
p_{i_{1}, \ldots, i_{j}+1, \ldots, i_{n}} & =\sum_{i=1}^{n} x_{i} b_{i, j} e^{-\mathscr{L}_{j}} p_{i_{1}, \ldots, i_{n}} \\
& =\left(b_{i, j} x_{1}+\cdots+b_{n, j} x_{n}\right) e^{-\mathscr{L}_{j}} p_{i_{1}, \ldots, i_{n}}
\end{aligned}
$$

Noticing that

$$
\begin{aligned}
e^{-\mathscr{L}_{i} r_{k}}{ }^{i} & =\sum_{l \geqslant 0} \frac{(-1)^{l}}{l!} \mathscr{L}_{j}^{l} r_{k}^{i} \\
& =\sum_{l \geqslant 0} \frac{(-1)^{l}}{l!} \delta_{j, k}(i)_{l} r_{k}^{i-l} \\
& =\left(r_{k}-1\right)^{i} \delta_{j . k}
\end{aligned}
$$

it is easy to see that

$$
\begin{aligned}
p_{i_{1}, \ldots, i_{n}} & =\prod_{j=1}^{n} r_{j}\left(r_{j}-1\right) \cdots\left(r_{j}-i_{j}+1\right) \\
& =\prod_{j=1}^{n}\left(b_{i, j} x_{i}+\cdots+b_{n, j} x_{n}\right)_{i_{j}}
\end{aligned}
$$

We call these the multivariate forward-difference polynomials.
The conjugate sequence to the forward-difference delta set is easily computed from the definition and the fact that

$$
\left\langle e^{i_{1} t_{1}+\cdots+c_{n} t_{n}} \mid x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle=c_{1}^{i_{1}} \cdots c_{n}^{i_{n}} .
$$

We obtain

$$
\begin{aligned}
\left\langle f_{1}^{j_{1}} \cdots\right. & f_{n}^{j_{n}}\left|x_{1}^{i_{1}} \cdots x_{n}^{\left.i_{n}\right\rangle}\right\rangle \\
= & \sum_{k_{1}=0}^{j_{1}} \cdots \sum_{k_{n}=0}^{j_{n}}\binom{j_{1}}{k_{1}} \cdots\binom{j_{n}}{k_{n}}(-1)^{j_{1}+\cdots+j_{n}-k_{1}-\cdots-k_{n}} \\
& \times\left(a_{1,1} k_{1}+\cdots+a_{n, 1} k_{n}\right)^{i_{1}} \cdots\left(a_{1, n} k_{1}+\cdots+a_{n, n} k_{n}\right)^{i_{n}}
\end{aligned}
$$

which for $n=1$ and $a_{i, j}=\delta_{i, j}$ is j_{1} ! times a Stirling number of the second kind. If we write this expression as $j_{1}!\cdots j_{n}!S\left(i_{1}, \ldots, i_{n} ; j_{1}, \ldots, j_{n}\right)$ we obtain

$$
q_{i_{1}, \ldots, i_{n}}=\sum_{u=0}^{i_{1}+\cdots} \sum_{i_{1}+\cdots+i_{n}=u} S\left(i_{1}, \ldots, i_{n} ; j_{1}, \ldots, j_{n}\right) x_{1}^{j_{1}} \cdots x_{n}^{j_{n}} .
$$

These are the multivariate exponential polynomials $\varphi_{i_{1} \ldots \ldots i_{n}}\left(x_{1}, \ldots, x_{n}\right)$.
(2) The multivariate Abel polynomials are the associated polynomials for the Abel delta set

$$
\begin{aligned}
f_{j} & =\left(a_{i, j} t_{1}+\cdots+a_{n, j} t_{n}\right) e^{a_{1,}, t_{1}+\cdots+a_{n, s} t_{n}} \\
& =\mathscr{L}_{j} e^{\mathscr{L}_{i}} .
\end{aligned}
$$

In this case $h(T)=e^{T}$ and part (2) of Theorem 16 gives

$$
A_{i_{1}, \ldots, i_{n}}\left(x_{1}, \ldots, x_{n}\right)=\prod_{j=1}^{n} r_{j} e^{-i_{j} \mathscr{L}_{1} r_{j} i_{j}-1}
$$

Since

$$
\begin{aligned}
e^{-i_{j} \mathscr{L}_{i} r_{j}^{i_{j}-1}} & =\sum_{k \geqslant 0} \frac{\left(-i_{j}\right)^{k}}{k!}\left(\mathscr{L}_{j}\right)^{k} r_{j}^{i_{j}-1} \\
& =\sum_{k=0}^{i_{j-1}}\left(i_{j}-1\right)\left(-i_{j}\right)^{k} r_{j}^{i_{j}-1-k} \\
& =\left(r_{j}-i_{j}\right)^{i_{j}-1},
\end{aligned}
$$

we have

$$
\begin{aligned}
& A_{i_{1}, \ldots, i_{n}}\left(x_{1}, \ldots, x_{n}\right) \\
& \quad=\prod_{j=1}^{n}\left(b_{i, j} x_{1}+\cdots+b_{n, j} x_{n}\right)\left(b_{i, j} x_{1}+\cdots+b_{n, j} x_{n}-i_{j}\right)^{i_{j}-1} .
\end{aligned}
$$

The conjugate Abel polynomials are computed from the definition. They are

$$
q_{i_{1}, \ldots, i_{n}}=\sum_{u=0}^{i_{1}+\cdots+i_{n}} \sum_{i_{1}+\cdots+j_{n}=u} \frac{\left\langle f_{1}^{j_{1}} \cdots f_{n}^{j_{n}} \mid x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle}{j_{1}!\cdots j_{n}!} x_{1}^{j_{1}} \cdots x_{n}^{j_{n}},
$$

where

$$
\begin{aligned}
\left\langle f_{1}^{j_{1}} \cdots f_{n}^{j_{n}} \mid x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right\rangle= & \sum_{k_{1}{ }^{1}+\cdots+k^{n 1}=j_{1}}\left(\prod_{i, j} a_{i, j}^{k_{j}{ }_{j}^{5}}\right)\left(i_{1}\right)_{k_{1}{ }^{1}+\cdots+k_{1}{ }^{n} \cdots\left(i_{n}\right)_{k_{n}{ }^{1}+\cdots+k_{n}{ }^{n}}} \begin{aligned}
k_{1}{ }^{n}+\cdots+k_{n}{ }^{n}=j_{n}
\end{aligned} \\
& \times\left(a_{1,1} j_{1}+\cdots+a_{n, 1} j_{n}\right)^{i_{1}-k_{1}{ }^{1} \cdots \cdots-k_{1}{ }^{n} \cdots} \\
& \times\left(a_{1, n} j_{1}+\cdots+a_{n, n} j_{n}\right)^{i_{n}-k_{n}{ }^{1}-\cdots-k_{n}{ }^{n}} .
\end{aligned}
$$

(3) The multivariate Laguerre polynomials are the associated polynomials for the Laguerre delta set

$$
\begin{aligned}
f_{j} & =\frac{a_{i, j} t_{1}+\cdots+a_{n, j} t_{n}}{a_{1, j} t_{1}+\cdots+a_{n, j} t_{n}-1} \\
& =\frac{\mathscr{L}_{j}}{\mathscr{L}_{j}-1}
\end{aligned}
$$

In this case $h(T)=(T-1)^{-1}$, and part (2) of Theorem 16 gives

$$
L_{i_{1}, \ldots, i_{n}}\left(x_{1}, \ldots, x_{n}\right)=\prod_{j=1}^{n} r_{1}{ }^{j}\left(\mathscr{L}_{j}-1\right)^{i_{j}} r^{i_{j}-1}
$$

Since $\left(\mathscr{L}_{j}-1\right)^{i j_{j}} r_{j}{ }^{k}=e^{r_{j}} \mathscr{L}_{j}^{i j} e^{-r_{j} r_{j}}{ }^{k}$ we obtain the multivariate version of the classical Rodrigues formula:

$$
\begin{aligned}
L_{i_{1}, \ldots, i_{n}}\left(x_{1}, \ldots, x_{n}\right)= & \prod_{j=1}^{n}\left(b_{i, j} x_{1}+\cdots+b_{n, j} x_{n}\right) \\
& \times e^{b_{i, j} x_{1}+\cdots+b_{n, j} x_{n}}\left(a_{j, 1} t_{1}+\cdots+a_{j, n} t_{n}\right)^{i_{j}} \\
& \times e^{-\left(b_{1, j} x_{1}+\cdots+b_{n, j} x_{n}\right)}\left(b_{i, j} x_{1}+\cdots+b_{n, j} x_{n}\right)^{i_{j}-1}
\end{aligned}
$$

From part (1) of Theorem 16 we obtain

$$
\begin{aligned}
L_{i_{1}, \ldots, i_{n}}\left(x_{1}, \ldots, x_{n}\right) & =(-1)^{n} \prod_{j=1}^{n}\left(\mathscr{L}_{j}-1\right)^{i_{j}-1} r_{j}^{i_{j}} \\
& =\prod_{j=1} \sum_{k_{j}=1}^{i_{j}}\binom{i_{j}-1}{k_{j}-1} \frac{i_{j}!}{k_{j}!}(-1)^{k_{j}}\left(b_{i, j} x_{1}+\cdots+b_{n, j} x_{n}\right)^{k_{j}}
\end{aligned}
$$

Acknowledgment

I would like to express my thanks to Jill, who patiently and expertly typed an extremely intricate manuscript.

References

1. J. Cgler, Sequences of polynomials of binomial type and the Lagrange-Good formula, preprint.
2. A. M. Garcia and S. A. Joni, Higher dimensional polynomials of binomial type and formal power series inversion, Comm. Algebra 6 (1978), 1187-1215.
3. I. J. Good, Generalizations to several variables of Lagrange's expansion, with applications to stochastic processes, Proc. Cambridge Philos. Soc. 56 (1960), 367-380.
4. S. A. Joni, Lagrange inversion in higher dimensions and umbral operators, J. Linear Multilinear Algebra 6 (1978), 111-121.
5. T. Muir, A Treetise on the Theory of Determinants, Dover publications, 1960.
6. D. L. Reiner, Multivariate sequences of binomial type, Studies in Appl. Math. 57 (1977), 119-133.
7. S. M. Roman, The algebra of formal series, Advances in Math. 31 (1979), 309-329; erratum, in press.
8. S. M. Roman, The algebra of formal series II: Sheffer requences, J. Math. Anal. Appl., in press.
9. S. M. Roman and G.-C. Rota, The umbral calculus, Advances in Math. 27 (1978), 95-188.
10. G C. Rota, "Finite Operator Calculus," Academic Press, New York, 1975.

[^0]: * Present address: Department of Mathematics, University of South Florida, Tampa, Fla. 33620.

