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1. INTRODUCTION

It is the purpose of this paper to begin the development of the algebra
of formal series in several variables. From the point of view of the present
theory, the natural objects of study are not single series in r variables,
but rather n-sets of series (f; ,..., f2)-

Let us take the variables to be #, ..., ¢, . Then the counterpart of a delta
series in one variable [that is, a series of the form a;r 4 a,t% 4 -+ with
a, 5 0] is a delta set (f,..., f,), where f; is of the form

f;' = d; 1l Tk G ate &

with g; being a power series whose terms are of degree at least two (or else
g; = 0) and where (g; ;) is a nonsingular matrix of constants. These are
precisely the sets of series which possess a compositional inverse. When
(a; ;) is the identity, we call the sct (f; ...., f») a diagonal delta set. To each
delta set one can associate a sequence of series as in the single-variable
case—a sequence which classically would be termed a sequence of “binomial
type” in several variables.

For diagonal delta sets, we are able to generalize all the theory of the
single-variable case. Thus we are able to study for the first time sequences
of infinite series in several variables with both positive and negative exponents.

However, in the nondiagonal case, some serious difficulties arise in
connection with negative exponents. It becomes somewhat of a problem
even to define (a; ¢, + - + a; .tn)~! in such a way that composition of
series retains needed algebraic properties. Nevertheless, we have reason to
believe that these difficulties are not insurmountable, and we feel close to a
conclusion one way or the other about the existence and usefulness of
sequences of series involving negative exponents. In the present paper
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FORMAL SERIES IN SEVERAL VARIABLES 341

we restrict our attention to nonnegative exponents for the nondiagonal case.
In this setting the theory generalizes completely.

We have decided to postpone a detailed study of examples and applications
of the present theory to a forthcoming paper. However, regretting somewhat
the total absence of examples in our paper on the single-variable case, we have
elected to give a few examples here, such as a multivariate version of the
Abel and Laguerre polynomials.

One reason for the postponement of a discussion of examples is that in
any single-variable case there may be many possible generalizations to several
variables, and without specific motivation it is hard to know which way to
proceed. Thus it seems pointless to pick arbitrary generalizations and compute
examples for example sake.

In this paper we have merely scratched the surface of the vastly com-
plicated theory of formal series in several variables. Not only do immediate
questions remain concerning the present work, but many new directions
present themselves. For example, we have not touched upon the com-
binatorial significance of any of the present results. Other directions include
the study of the calculus of residues in several variables and a generalization
to local rings. We hope in time to touch upon all of these.

2. THE ALGEBRAS

Let K be a field of characteristic zero. Let I" denote the vector space
of all formal series in the variables ¢, ..., z, of the form

f=Y T g,
u=m dyteeti,=u
where a; , ., € K, mis any integer, and where the asterisk indicates that the
sum is a finite one. Under ordinary multiplication of formal series, I" is an
algebra.

The degree of fe I' is the smallest integer m such that a;,...q, 70 for
some iy ,..., i, with i + - 4+ i, = m. Notice that if £, ge I, then deg fe =
deg f+ deg g

We let P be the algebra of all formal series in the variables x ,..., x,
of the form

k
p= 2 Y5 byt X
V=—00 fi+ ti,=0
where b; . ; €K, k is any integer, and the inner sum is a finite one. The
degree of p is the largest integer k such that b ,,,,, 5, # 0 for some jy ..., ja

with j, + --- + j, = k. For p, g € P, we have degpq—degp+degq
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We put a topology on I by specifying that a sequence f; in I" converges
to fe I' if for any integer u, there exists an integer k, such that if £ > k,
then the coefficient of #jt - ti» in f; equals the coefficient of ti1 - tin in f
for all i, ..., i, with 4 4 .- + i, < u,. We put a similar topology on P.
Namely, a sequence p; in P converges to p € P if for any integer u, there
exists an integer k, such that if k > k, then the coefficient of ¢{ -- ti» in
Py equals the same coefficient in p for all i; + -+ + i, = u4,. Both I" and P
are topological algebras.

3. DiAGONAL DELTA SETS

The set (f ,..., fu) 1S a diagonal delia set if

fi=t+ g

for i = 1,...,n, where g; = O or else g, is a power series (that is, has no
negative exponents) of degree at least two. Any element f; of a delta set
has a multiplicative inverse in I. For g; = 0, this is clear. For g; # 0
consider the series

Y (=D gk

£>0

Since deg g; > 2, this series converges in I, and is therefore the multiplicative
inverse of f; .

I f = T Sipsoootiymu Qi i 2 and if gy, g, € I we define
the composition of f with g, ,..., g, as the series

g 8) =Y X5 ai.. .8 g

u=m ty+-ti,=u

provided the sum converges. If (g ,..., g,) is a diagonal delta set, then
deggir - gin = i; + -+ 4 i, and so the sum will converge and f(g, ,..., gn)
is always defined. Moreover, if (f;,...,f,) and (gy,..., g,) are diagonal
delta sets, then (f3(g1 5..» Za)seros frl€1 5oy £5)) 18 @ diagonal delta set. It is
well known that any diagonal delta set has a compositional inverse, that

is, a diagonal delta set (Z ,...,17) for which

ﬁ(?l—)’—f_"n) =1 :f_z(f;l a"'5fn)

foralli =1,..., n.

We say that the set Pi,.....i, in P, where i, ,..., i, range over all integers,

.....
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is a strong sequence if any g € P has a unique representation as a convergent
sum

4. AN ActioN oF I' ON P

We define an action of I" on P. Let ¢; be a sequence of nonzero elements
of K for all integers i, and suppose ¢, = 1. We denote the action of fe I”
on pe P by

Sl

and set

... 4ln I1 ee ydnN e
<t tr ] xg X0 = eyt €4 044, 7 O

ipadn

where 3, ; is the Kronecker delta. The action is extended to all fe I" and
p e P. Thus if

S=Y X anahtoiy

and

k

p= ) Y baaXt X

Vom0 fyteo i, =0
we have

k

Sflpy = Z Z* QirooigDig, i Coy 7 Ca
U=m &yt ip=u
It is clear that <f|p> = 0 if deg f > deg p.
Since (f|xyt = x> =@, .. ;¢ ¢; We have
© {f b
f=2 X = "

Cs C;

in
n > til ti"'
1 .
u=m d+-eti =u 1 n

Also,

k 31 in
¥ S LmIp) j
p =5 Z Z _.___“ n : .xil s xjn-

. . n
V=—00 ji4 i, =0 ch C’n

From this it is clear that if {f|p> = 0 for all pe P, then f = 0 and if
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{flp> =0 for all feTI, then p = 0. We call this the spanning argument.
It is easy to verify

PropPOSITION 1. If f, g€ I, then

; ; iyt tig—k N Ci *t Ca

i 1 ... nN 21 in

<fg|x1 Xn> - Z Z Ci " Ci Coi *** Cy s
u=m Jyteertig=u TN In- 101 InIn

x {fl xi’l xi"><g | xi’l—il xiﬂ_5n>’
where m = deg fand k = deg g.

An induction argument gives

PROPOSITION 2. Iffi ..., fm €T, then

. . c, e c,
B e 2} n
<f1 fm|x1 xn"> - Z z
Cipl **" G5l = Cyym *om Cym
m=degfy l4otit=u 1 " b "

. + +
up=degfy, - :
+ +

j1m+ M g
it i

il in

s 1 s 1 M s m
X <f'1|x;1 ...x;n> ...<fmlxil '"’x;" >-

5. ASSOCIATED SEQUENCES

A strong sequence p; , ., is called the associated sequence for the diagonal
delta set (f; ,..., f) if it satisfies

i i Poy = €1y €80y " i
for all integers j, ,..., j, and ij ,..., i, .

THEOREM 1. FEvery diagonal delta set has a unique associated sequence.

Proof. For the uniqueness, if Pi,.....i, and q;
sequences then

i, are both associated

it Sy
fagh =Y T* <t "n“fl’z.'xm..in> G fin

. . [ [&
u=m i+ +ip=u 53 in

This follows from the fact that the right-hand sum converges, applying
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both sides to p; ,....;, gives equality, and that p; , . ; is a strong sequence
and therefore spans P. Thus

k ke
(o B Poyain)

© Ey voi f¥n | p. ) . )
=y oy S Paind (pi iy

u=m i34 Fi=u Ci, 7T 6

n

o k... kg R .,
— z z* <t1 tn. lpu ..... Zn <f f;,, l qil """ J',.>

: . C;. €y
U=m i+ +i,=u 21 tn

= (- k”|qa'l ..... i

and so pa ..... i, T ‘111 ..... ip
For the existence, the identity

E k. k -kn J .o .ﬂ
KO o 1| Pty = TR oo o | 22 oo i

defines a set Piyoenni, for which degp; .. =i+ -+ i, and the only
term in Piy.....i, of degree iy -+ - + i, is a constant multiple of i1 - ¢in,
Thus p; ,...;, is a strong sequence in P. Since

aes 7n — Z Z* <f11_1 .“f’ft” i x’]‘.:l ot xnﬂ> wee pEn

i 4
Cr, " Cpe 1 n s

1 n

u=m kyte+k,=u

we have

<fi1 f;" | Pis....ipy

_ i z* {f ffz" [ x ) > <tk‘ e thn

u=m K+ +k,=u Ciy **" Ckp

- i ¥ i "‘Cffz'".l Xgt e X (TR oo T it iy

u=m k4 +k,=u k7 Cry

— <til ces t:;" l xil vas x;n>
cinsil,jl 8

inidn *

—_ Cil

Note that if p,, . is an associated sequence, then degp; ... =
iy + " + i, and so

3
Z Z* QisvnninPig iy

V==00 §ytrr i, =0

will always converge in P.
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A convenient device for handling associated sequences is the transfer
operator. If p, , .., is an associated sequence the continuous linear operator
A on P defined by

L N 7
AX - X = py

is called the transfer operator associated with p;,  ; . Notice that A is
defined on all of P, and that A is a bijection.

If u is any linear operator on P, we define its adjoint p* as the unique
linear operator on I" defined by

{p*f] xil xin> = {f] 'uxil x;n)
for all fe I

THEOREM 2. A linear operator A on P is a transfer operator if and only
if its adjoint A* is a continuous automorphism of I which maps delta sets
to delta sets.

Proof. 1Itis clear that if A is a transfer operator, then A* is linear, one-to-
one and onto. The proof of Theorem 1 shows that if A: xpt =+ xp» — p;
is the associated sequence for (f; ,..., f,,) then

n — k1 ... Fk 1.yt
K Pay iy = it T It s X,

Thus if ge I' and

w0
g= V5 Gyt

u=m k-t +k,=u

we have
{A*g | xil x;"} =<glpi...i

= Z Z* ... k,,<ff1 fﬁn | x;'x x;n)

u=m ky+r k=t

Gy e FY 125 0 X0

I

So A*g = g(fi 5., f») and A* is continuous, preserves products, and maps
delta sets to delta sets.

For the converse, suppose u* is a continuous automorphism of I" which
maps delta sets to delta sets. Suppose (f; ,....f,) is the delta set for which
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pXf e fin = th - t’ Then if pi,...i, is the associated sequence for
(fisees fu) and Xz X1 - xin — Pi,,....s, 18 @ transfer operator, we have

)\*ffli fiﬂ = fil(fl S fi"(f; ’_",fn) = til t;"

and so A* = p*.
The important properties of transfer operators are contained in

COROLLARY 1. (@) If A:xh - xip— Pi.....i, is a transfer operator,
i, 1S associated to (fy ,..., f), then zf ge T, we have

A*g = g(fy s fu)-

......

In particular,
,\*ffl'x "'fi" = ,;1 zj;".

(b) A transfer operator maps associated sequences to associated
sequences.

© IfA: Pi,.... > Gi,,...i i5a linear operator, andp; .. ; is associated
to (f1 -5 Jfu)s and qzl _____ 5, 15 associated 1o (gy ;... §x), then X is a transfer
operator and

)\*gil... 1n~_.f7'1...fln

Proof. (a) Part (a) is proved in the proof of Theorem 2.
(b) Suppose A: xit - Xt pi
sequence for (gl » ’gn) Then <()\ 1)* gl IA%I ..... zn> = <g ' gn"l
Qi) = Ci "€ 8 ;- 0; ; and so Aql ; 1s the associated sequence
for (X% gy ..., A)* g,).

() We have M¥gpgirlp.) = eit gl qiya) =
A fam 1 pa,...i0- Thus A*git -o. gin —f,’1 - f=. This implies that A*
is a continuous automorphism of I’ mapping delta sets to delta sets, and so
A is a transfer operator by Theorem 2.

i and let g, ; be the associated

.....

......

Suppose p; ;, are associated sequences and

...........

m

— * SRR |
Piteosin = 2. Y iy, % X

U==—0C j1+. - '+jn=u

We define the umbral composition of p;
sequence

;, as the strong

...........

m

Dy, z',,(‘l) = Z Z* (27 TN X/ F S

U=—00 fi++etig=u

which converges in P.
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The content of the next theorem is that the map which associates to each
diagonal delta set its associated sequence is a group homomorphism from
the group of diagonal delta sets under composition to the group of associated
sequences under umbral composition.

THEOREM 3. If (f1,..., f,) has associated sequence p, ,....; and (gy ..., &)
has associated sequence q . .. then (fiy(gy s &n)s-- fn(gl seers &n))  has
associated sequence p; ... ; (q)

Proof. If X: xb - xin — 4i,.....i, 1s a transfer operator, then Ap;,  ; =
Pi,...... (@. Moreover, (A)*f = (@, s €x) and 50

ey s 8) 0 (8 5s &) | Piy,...i (@
= QYR Ay, i

:<f’1‘1 "'fi"lpil ..... i
R IR

2 t1s71 inadn

and the theorem is proved.
If (/1 ,..., f) 1s a diagonal delta set, and if g
for the compositional inverse (f; ..., f,,), then

0 is the associated sequence

i+ tip <fj1 vee £In | xil Xi"> . i
qil.-u.i,, - Z 2* 1 fn 1 n Xi1 x’".

U=—co  JitrrrHi=u Ciy Cin

We call ¢, .., the conjugate sequence for (f, ..., f,). Thus the conjugate
sequence for a diagonal delta set is the associated sequence for its com-
positional inverse.

i I8 the associated sequence for (fy,....[fn) and

Pi,..., i,,(q) = xil x;" = qi,....1;,(P)-
One of the key results of this section is

THeoREM 4 (Expansion Theorem). Let (fy,....fn) be a diagonal delta
set with associated sequence p; . Then if g I, we have

-------

g = i 2* <g|p11 ..... ln> f f

. : C;
U=m Ey4 iy =u i

where m = deg g.
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Proof. 1t is clear that the sum on the right converges, and applying both
sides to p; .., gives equality. Therefore, the spanning argument proves
the theorem.

The Expansion Theorem has some very important corollaries, which we
examine next.

Suppose u, ,..., 4, are integers and @ ,..., a, € K. The evaluation series
€L am in I' is defined by

n

© J1 ... In . .
PRSTRIT Uy _ Z Z 4 an o pin
[ TS ap ) Csi *** Cs 1 n’
e N e In
J>uy

This series has the property that

Cegrivamlxt x> =0 if j; <w; foranyi,

— g1 1 i i
=a}ar if j; > u, foralli

Moreover, if {efr:3n | p> = 0 for all evaluation series then p = 0.

yyees2ly,

CorOLLARY 3. If p; ... is the associated sequence for (fy,...,f,) and
if g€ P, then

k J1 ... fIn

Cj C]- p)], ..... In

U=—c0 Jyteertig=u 1 n

where k = deg q.

Proof. From the Expansion Theorem we have

U=ty 4y, j1+. . .+j"=u

applying g to both sides gives

& 1 .. fin
gmmlo = Y 2y <—f1;—f;u>— o | Pas
J 7

umugbe oty Gkt =u 1 n

k Ji... in
Z Z* L:]_:ijl ..... j,,>

Um0 fy+ertip=u S S

and since uy ,..., 4, and ay ,..., a, are arbitrary the proof is complete.
We may use the Expansion Theorem to extend Proposition 1.

CorOLLARY 4. If p; . . is an associated sequence and if f, g e T, then
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Tt ik y o e
S8l Piy.iw = X > —— i
u=m  jyteertig=u Ciy CinCir—iy Ciyiy
K SF | Py i & | Piyigsnsninin?-

Corollary 4 has a converse,

ProrosiTION 3. Suppose Pi,.....i, is a strong sequence in P with the
property that deg Pi....i, = b+ I, and the only term in Pi....i, of
degree iy + -+ -+ i, is a constant multiple of X't - x%». If

iyt tin—k

<fg |,pi1 ..... i,,> == Z Z* Cip " Cyp

T S R N ]

X LS Piain<8 | Piyiy,.... inmin?

Jorall fand g in I' withm = deg fand k = deg g then p,
sequence.

: is an associated

Proof. For any « = 1,..., n and any integer 7, we define the series f,,; by

<faz,, | Dy, Ic"> = ciasia,k‘u H 80.7c3~

B#a

We would like first to show that (f;,; ,..., fx,1) is a diagonal delta set. Now

{fon kal ..... Ko = C181,ka Z 30,k3

Bta

and if i + -+ + i, <0, we can express xit --- xi» as an infinite sum of
Px,.....x, Which includes only those for which %k, + - + k, < 0. Thus
degf,, = 1. Similarly, if i, + -+, = 1 we may express xj! *** x," in
terms of p, , . .x, , Whereeither k; = iy ,..., k, = i, orelse ky+ ok, <1
and so {f, ;| X3 - x}»> = 0 unless i, = | and i; = 0 for all B 5 «. Thus
degf., = 1 and the only term in f,, of degree 1 is a constant multiple
of ¢, and so (f1.1,...,fn,1) 1S @ diagonal delta set.

Now consider the product f, ; f.; - We have

Kyt tkp—ia

<f;t.la.f;t.i& |1)k1 ,,,, kn> == Z Z* Cpy ckn

u=1 iyttt =u cil T cinckl_il o Ckn—in

(1

X L forg | Pyt Sosi | Proymitgeescsbn—in?

= Cla+ia81ﬂ+fa,ka H 80,7«:5
B

= <.ﬁ¢,la+3’a [ Praecion)
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and the spanning argument implies thatf, ; fo; = fa.1,+5, and s0 S, =f&-
Finally,

P 0 Py = iy Sruig | Py
w=j, dyten e bin=u Ciy °7 Ciliymiy °77 Crpiy,
X S | Pey., i,,><f2,j2 i | Piyigen s ki
Ci
= - fa, ja = frdn |Pk1—;',.k2 ..... kn>-
Cryiy
Continuing in this way we obtain
g
” Crr """ Crn-
GRS f] | Pk = —— S mig | Piymiv e kg s—in—1bin”

Cri~i1 " Chop_y=dny
p— ckl “es cknskl.jl can Skn,jn
and so p; ... ., is the associated sequence for (f1 .-, fa,0)-

In the very important special case that ¢, = k! for £ > 0, it is a routine
calculation to show that the evaluation series satisfies

0 0.0 __ 0
ay,..., Gnebj ..... b, T 6111‘”’1 ..... Gyt by,

For pe P we let f € P be defined by

AF et By =t > for iy e iy =0,

=0 otherwise.

Thus $ consists of that part of p which contains only nonnegative exponents.
Then (e ,(, | py = <6ap Y, | P> and we have by Corollary 4

(7)

0,045 Q 4
X <€al ..... ay, Iph ..... .’l,><€b1 ..... bn ‘ Pal Fireens i,,~y‘n>-

iyt tip

..... ~ _ 12
it apeny | Piys i) = 2, > ()
u=0  Gyteeti—u 1
0Tl
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We may write this more suggestively as

ﬁil ..... 1',,(‘11 + bl seeey Ay + bn)

[N,

="y Y (il)
U=0  Jte..tip=u J1
0 <ip

I\ ~ . )
( n) Biveeni @1 5oy @) Piyinoims (B 5oy D)
Jn

for all a;, b; € K. We call this the binomial identity.
;, and Gi,.....i, r€ associated sequences, and if

ke
Piy iy, = Z Z (27 T N/ P
h=—oo jyteestig=u
then the connection—-constants problem is to determine the constants a,....i, -
One solution is given by
ProposiTION 4. If Pi.....i, IS associated to (f;,...,f,) and i,.....i, IS
associated to (g, ,..., g,) and if

Pi,...i, = Z Z i eesibivnrin ()

U=—0w jitreoti,=u

vy

then the sequence

k
— * I oo i
Figyernsin = > Z LT 24 X
U=—00 Jytoooti,=u

is the associated sequence for

(fi(gl EaRa] g’n)""’fn(gl sy g_ﬂ))‘

6. ANOTHER AcCTION OF I' ON P

We wish to find a method of computing the associated sequence of a
diagonal delta set. To this end we define another action of I" on P, which
we denote by juxtaposition. Our motivation in defining this action is the
requirement that

<f|gx;‘ xin> — <fg | xi'l x;n>'

Expanding the right side using Proposition 1, the spanning argument forces
us to take
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. . Gyt tin—k " Cyy Gy

21 oy oytn n
P T D e e
U= Jybeedig=u T T t1—01 in—In

X <g ] xil"“ x;n‘-’n> xil x;ﬂ_
Thus
Ciy 7" G iy—ky .

.
in—kn

[T S R .
t 1,"x, X" = x,

1 n AN
Ciity Ciptip

Moreover, we have
PropoSITION 5. If f,ge I, then
Slgts -+ Xy = () X+ i = (&) xpr o X = g(ft - X8,
Proof. If heT, then
Chiflgxy - x> = Chf gt x>
= (hfg | x5 X
= <h|(fg) Xt X

and so f(gxi - xi) = (fg) x -~ x/a. The rest is evident.
We can characterize associated sequences by means of this new action.

THEOREM 5. A strong sequence p; . . . is the associated sequence for

(f1 s f2) if and only if

1 K-t ‘Pil ..... i,,> = 81‘,.0 812,,,0 >

. . Cii " Cs
(2) fil o f;lnpil,..,i” = -_-i—_—“l——pilvfl,...,in—jn *

cil"jl o in‘jn
Proof. Suppose p; ,....i, is the associated sequence for (f;,...,f,). Then
<f;’lCl f::" Ifil fi,"Pil ..... i <f’fl+j1 fﬁ"“" [Pyt

= Cj " Cinail,jﬁ—kl Sin,jn+kn

— G S (e g S

Ciy—iy 777 Cip—i,
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and the spanning argument completes the proof. Conversely, if (1) and (2)
hold, then

. ) Cr e
I ... fin — 0...40 f ’
S pay i = <t1 W o e P i,fé,,>
217y tn~In
ST IN F

Theorem 5 and the Expansion Theorem imply

COROLLARY 5. If p; . . Is an associated sequence, then for fe I,

. C G
Sipew =L L o e,
X KN i oosin? Piyeivyeinin >
where m = deg f.
In the important special case that
o, = k! for k=0,
_ ‘——“(fk_ 11“11)! for k <0

it is easy to show that if 4, ,..., {, < 0, then

Do Xyt o X = (% F b (X By

Thus Corollary 4, withf = 1 *and g = eb ,, gives, for the associated
sequence p;,

iyt tiy, TSy i

Ugseres Uy | Daenrs N Z z 1) ...
<‘a1 ..... | Ebl ..... bnpll ..... i = j
U=ty oot Jytoeti=u U1

(7)

x {eg ::::: P, y,,><€bi,':.'f.bn [ Pigeinirin—in?
for all integers uy ,..., u,, all a;, b, € K, and all negative integers i, ,..., i, .
This may be written in the following suggestive form:
ittty ISy i i
n
pél ..... z',,,(xl + bl seeey X + bn) = Z Z (]1) o (1 }
U=—03  Jyce =t Jn
X Pigooeiis 0 ey X0) Pirgy o tii(By 5o br)

for all b,,...,5,€ K and all negative integers i ,..., i, . We call this the
Jfactor binomial identity.
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7. THE TRANSFER FORMULA
In this section we derive a formula for the associated sequence to a

diagonal delta set. For j = 1,..., n let 0; be the continuous operator on P
defined by

. G+ Ve, . .
SRR S AL Nt i AV SNUN PRI oS PR
Oxp - xm = o XXX e X
i
Then
) i+ De ) , ,
E k (7 i k k j+1
<0]’ tll ves tfn” | xil e 1n> — __T—*_—____’_ <t 1 ... t”" | xil . x;ﬁ' ‘e x;n>
i
kyoL.. '-1 .. tF oy F
= kit Ll xt e X

— tha .. 1 .. yin
<dt 1 nn xl 'xn>’

where 0/dt; is the partial derivative operator on I'. Thus 8f = 9/ot,.
If fi,.... fu € I, the Jacobian é(f; ,..., f,) is the formal series

ofy ooy f) = det (Tf—f)

THEOREM 6 (Transfer Formula). If p,

i, 1S the associated sequence for
the diagonal delta set (f; ,..., f,) then

Ciy

* ¢ _1—i iy, - _
Diyiii, = C" = a(fla . n)fll “a fnl l"xll xnl-

Proof. We will show that the right-hand side satisfies the conditions of
Theorem 5. It is easy to see that the right-hand side is a strong sequence,
and condition 2 is straightforward.

We must show that

O frseens S0) f~1 i 'lehi" | xx_l X;l> = Cﬁlsil.e 3i,,.o-

Since f; = ¢; — g; we have

—1—%; 2 k; o 1—fi—Fs
fjl T Z (ly _;c_j J)g;c,tjl 3=k

B0
and writing ¢ for (/) ,..., f,) and D; for &/¢t; ,

640/26{4-3
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<af;1‘i1 ,_,f;lvin I xl_l x,“l
_ Ry T Ky e ke
1
P L S N x;l>

SR Y R LA Ea

i yeen e k0
"
-1 dvthy ... yintky
C, e xl xn
i1+ky tptky
%y En n
€1 13 Ko ;
= (0 &1 ven &n 1 <. 7yt oo, yin
< Z k! k H C. v Cy 01 074, xl xn
AT Y B nt 1 by iy

¢y < g .. &
L D. D (3 )
Ciy *" Gy Ny Zk >0 & o ky! k!
So if we write g¥i/k,! = hf, we are left with showing that

Z Dk1 Dkn[ah;cl h:'n] = 1.
0

This fact has been proved by S. A. Joni but we repeat it here for the sake
of completeness. We have ¢ = det(5; ; — D, g;) and so

OR o+ him = det(8, h7 — D).

(Y

If A = {1,..., n}, then this determinant is equal to (see Muir, p. 109)

H h?) det(Dik§j+l) (i,))eaxa

icd—a

¥ (=1
acA
and so we must show that
IZ‘A (—1)lat . Zk . Dfl D:" [(iel;l_a h?i) det(Dih;”H)u,j)eaxa] — 1.

Note that if k; = 0, then A% = 1. If we think of » C A4 as the set for which
k; =0 if ie A — b, we may write the above sum as

Y (=Dt ¥ ¥ ¥ Dfte Dy [( I1 hfi) det(D ;™) i)eaxa]’
acA k>0 bJa kg>l i€A-q ’
aEa Beb—a
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where if ¢ = b = @ the sum is 1. This equals

Y X e (T8 IT 08*)[( T1 A) detD A ™) peaa)

bCA aCd ko0 iea i€b~a ieb—a
a€db

B bZL:A kméo (zl;la D;Ci) a;/:;r (=D (ielb——[~a Di)[(ielga hfiﬂ) det(Dih”‘CﬁI)‘i'”G“X"]'
ach

The following lemma will then complete the proof.
Lemma. If 1, eI for i = 1,..., n, then for b, a nonempty subset of A,

Z (=Dl ( ﬂ D,)[( H li) det(Dilj)(i,j)eaxa] = 0.
ach i€b—a i€b—a
Proof of lemma. We may assume that b == {1,..., m}. After all differentia-
tion is performed, each term is of the form

:*:(Blll) ot (Bmlm)’

where {B, ,..., B,,} forms a partition (with possibly B; = @) of {D, ,..., Dpn}.
In fact, for a fixed set a C b and for each permutation ¢ of a, the determinant
produces terms of this form for which D, € B; for all i € ; that is, terms
of the form

(=Dl (1) (H CiDa(i)li)( H cjlj),
i€a jeb—a
where {c; ,..., ¢,,} 18 a partition of {D;};,_, . Moreover, all contributions
from set a are of this form for some . However, as the set a varies, we count
each term of the above form more than once. Consider a fixed partition
{By 5. Bp} of {Ds,..., D,,} and the corresponding expression

(Bil) - (Buulw)-

If there are r cycles & ..., «, in b for which D, (; € B; for all j for which
ai() is defined, then this expression is counted once for each product of
any of the cycles o ,..., o, . The corresponding set a is the union of the
cycles involved in the product. Moreover, if ¢ is the product of k cycles,
then (—1)!%i(—1)° = (—1)*. Thus the above expression is counted

times, and the lemma is proved.
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8. SHEFFER SEQUENCES

A large number of sequences occurring in the literature are not associated
sequences, but are closely related to them. If p; , ., is an associated sequence
in P and if g is a series of degree 0 in I, then the sequence

Siteenirin = 8Pis,...iin

is called the Sheffer sequence for p; , . .; relative to g.
The following lemma will help characterize Sheffer sequences.

LEMMA. Suppose L is a linear operator on P with the property that
SLp = Lfp
Jor all fe I' and p € P. Then there exists a series | € I" for which
Ip=1Lp
for all pe P.

Proof. We have

LX(f)lp> =<fILp>
=<1 |fLp)
= <1 | Lfp)
= (L*(1) | fp>
=L f|p>

and so

L¥()f = L*(f).
Then if we set [ = L*(1), we have
Slpy = Lfllp> = LX) | p> =S| Lp>

and so

Ip = Lp.
We can now characterize Sheffer sequences.

THEOREM 7. A strong sequence s; . . .. in Pisa Sheffer sequence if and
only if there exists a diagonal delta set (fy ,..., f,) for which
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fjl cee fjﬂs — Ci’ ‘_._' _..ci"__ S .
1 7 fetin T T
Pt in—In

Proof. 1f s; . . is a Sheffer sequence then there exists an associated
sequence p; .. .i, for which

Sitsovnin — 8P4ty

Then if Pi.iiy is the associated sequence for (f; ,...,f,,) we have
fil f;"sip...,i" = fjll fi:'gpil ..... in

=&f P,

cil Cin
=8 T Piinigin

1~ ’ cin“%

in
e 0o Sil‘-?l ---- fp—Tn *
tn—In

Ciyiy

For the converse, define the continuous linear operator L by

where p; . ; is the associated sequence for (f; ..., f,). Then

1 ... fin — fh .. fin
13 fanil,...,i,, ~f1 fnsil ..... in
Cil o C‘in
= - : Sy —itnneirin=in
=5 c"’n“‘jn

= Lf - fPiin
and so
Lf = fL
for alf fe I'. The lemma then implies that there exists /€ I" for which

lPil,...,i,, T Siy i

Since deg/ = 0 the sequence Sy, is a Sheffer sequence.

9. DELTA SETS
Suppose f; ,..., f. € I" are of the form
fi=aati+ -+ ity g5,
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where a; ;€ K, g; = 0 or else g; is a power series of degree at least two,
and det a; ; # 0. Then it is well known that (f; ,..., f,,) has a compositional
inverse (f ,..., fn), which is of the same form as (f; ,...,f,). We call such
sets (f7 ,.... f) delta sets.

Unfortunately, our work up to now is not general enough to deal with
delta sets. This is mainly because an element f; of a delta set does not
necessarily have a multiplicative inverse in I'. It is possible to generalize
the algebra I" and thereby introduce a multiplicative inverse. However,
all attempts made so far to do this seem to produce more difficulties than
they eliminate. We are forced therefore to restrict our considerations rather
than to extend them.

Let AC I be the algebra of all formal power series in the variables
t 5.y t, . Thus if f€ /1 we have

S =

Ms

%

]

m tyt b=
42

where m is a nonnegative integer, and the inner sum is automatically a
finite one. Let R C P be the algebra of all polynomials in the variables
X1 5-.-» X - Thus p € R may be written

Most of the definitions and results of the previous sections carry over to
the subalgebras /A and R. Therefore, we will proceed informally, giving
proofs only when there is a significant deviation from the earlier theory.

We keep the same definitions of degree, strong sequence in R, composition
in A and wmbral composition in R. Moreover, we keep the same definition
of the action of I" on P as described in Section 4. In other words, if fe 4
and p € R, we think of the action {f| p> as the one defined for fe I" and
p e P. Thus

tli”

L%

'X”n> til
. 1 n
k2

u=m &4, =u Ciy 77 Cay,
220
and
i dy ... 49
o Z <t1l it Ip> xﬂ'l x]'n
P = Ci vt Cs 1 a
=0 j1+ --+j"=1) 71 In
720

The spanning arguments still hold for A and R, and so does Proposition 1.
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However, the action of I" on P described in Section 6 needs some modifica-
tion. We take

; : Ciy " Gy i _— . . .
t;cl t:nx;l x::' (> SR .2 J— xlll ky ... x;n kn if i; > kj for all Jj,
ckl_il o Ckn'_in
=0 otherwise,

and extend this to all of 4 and R. If g€ A we have

. . Jpteetin ST c].l cfn
g =y Y
1 n £ . €t €y Gyt G
u=m iyt 4, =u 1 n 17t 2~ tn
120

< <g l xil—jl x:;n”‘jn> xil xiﬂ
as well as
<fl gx;l x:'zn> . <fg | Xil x;n>

and

vy — In vee xl
SExXT e X = gfxr e X

10. ASSOCIATED SEQUENCES FOR DELTA SETS

The associated sequence for a delta set (£, ,..., f,) in A is the strong sequence
pi,....:, satisfying

<fil "'fi;'?Pil ..... ) = Cip vt €0 gy e O

for all nonnegative integers j; ..., j, and i ,..., i, . Our first task is to show
that the associated sequence exists and is unique.

Suppose (f; ,...f) is a delta set. Then since deta,; # 0 we conclude
that any g € A can be written as a sum,

pein

o
g=3 X an.aftofn (*)
u=m ty+tiy=u
i;20
for some m >0 and g, ,., €K
Now suppose p;,,...,;, is a set of elements of A, where iy,..., i, range

over all nonnegative integers. Thus Pi,.....;, need not be a strong sequence.
Let p; ... have the property that

<f)11 "'f;" [ Pisoviyy = Cip oo Cz'nazl,jl 8i,,,a‘,,~
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Then if we apply both sides of (*) to p; ,....;, we obtain

a (81 Pis..cin
Taeens jn Cj cee cj
1 n
and so
i Z {g|Pi....in> L fin
Ci O 1 n
U=m §y+ i =u 31 tn

420"

for some £ > 0 and a;
defined by

for all i,,..,i, > 0. It is clear that if p,ge R and <€a1a
<ea1, e, | for all ¢, ,..., a, € K then p = ¢. Since

o 1ee
0,....,0 __ Z Z <€a1 ..... an ‘pn ..... in> 51 fln
eu]_ ..... ay e: - e, 1 n
u=0 i+ i, =u 3 in

we conclude that for any g € R with deg g = &,

(O Iy =Y Y iflc:LJ—';—z‘—qZ@': ...... Yan | Py

n

y oy <f1"“fn"itl>P

iy C:

n

and so

.....

......

,ll

a, | P> =
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Moreover, if

then by applying 3 --- fi» to both sides we see that

et
Ajeisin = i €
1

n

.....

and thus the coefficients are uniquely determined. So pi,
sequence.

i, 15 a strong

THEOREM 8. Every delta set has a unique associated sequence.

Proof. The uniqueness proof is the same as that in Theorem 1. The
identity

<t{1 tizn |p21 ..... iﬂ> — <f‘\711 ...f;";n ‘ x:I x;ﬂ>

defines a set p; , _; in R and as in the proof of Theorem | we have

.....

<f7'1 ...fJn }Pz‘l ..... 1,n> =y cinsﬁ.h Bfnr?n .
By previous remarks the set p, , ., is a strong sequence in R and therefore
is the associated sequence for (f7 ,..., fo)-

It is clear from the proof of Theorem 8 that deg Pijorsiy S i+ iy
To see that degpil,_,‘_,i" =i+ " + i, we must show that Pi.....i, has
a term of the form ¢ - ¢;» for which j; + -~ + j, = iy + -~ 4+ i, . That
is, we must show that (- tinlp; > = (Fp - Jiplxp - xp) is
different from zero for some j, + = + j, =i + - + i,.

Clearly, we may assume that

Ji= @ty + G ata .
Then we have

t; = aiafi + o+ ainfn

and so

t{l ot t;n = ],—I (ai.l.fl + o+ ai.nf-n)i"

i=1

= Z Xtgnens unf_‘;t1 Tt f:"

Uyt b Uy =i b,
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i + + ++ I, it must be true that fis -« fin contams a term of the form
tl ﬂ

The transfer operator associated with Pi,
defined by

for some constants a, . Thus for some #, ,..., 4, withu, -+ -+ -+ u, =

i, is the linear operator A

Z
/\x11 xnn — pil

and the analog of Theorem 2 and its corollaries hold for A and R.

THEOREM 9. A linear operator A on R is a transfer operator if and only
if its adjoint A\* is a continuous automorphism of A which maps delta sets
to delta sets.

COROLLARY 6. (2) If Axbr - xi» > p, i, is a trangfer operator and
1 poeers
Pi,.....i, is associated to (f, ,.. fn) then if g € A

)\*g = g(fl s---sfn)'

In particular,
)\*f711 . f’n — t71 t]"
(b) A transfer operator maps associated sequences to associated

sequences.

© I Xpi,.i, ™ G, zs a lmear operator, and p;
associated to (fy ,...,Jn) and g,
transfer operator and

......

)\*gil 7n *f ..,fln

THEOREM 10. If (f, ..., f,) has associated sequence p; , ..; and (g1 &)
has associated sequence q; . i then (f1(g1 sos 8n)seers Jul 81 5oos 8n)) PaIS
associated sequence p; .., z"(q).

The conjugate sequence for the delta set (f;....,f,) is the associated
sequence for (f; ,..., f,) and so equals

z.1+""‘i'7fln <fil f:Ln l x;l x’rfn> ; ;
P

1 In

..... u=0  j+tip=u
720
CorOLLARY 7. If Piy.....s, and q;,
sequences for (f1 ,---» frn)> then

,,,,, . are the associated and conjugate

Pivoi (@) = XI1 o X =gy, (D).
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We also have the all important Expansion Theorem and its corollaries.

THEOREM 11 (Expansion Theorem). Let (f,,...,f,) be a delta set with
associated sequence p; ... ; - Thenif g€ T, we have

g= Y ¥ EBesdgiopn

where m = deg g.

CoroLLARY 8. If p;
if g€ P, then

:, is the associated sequence for (fi,...,fn) and

k J g
Sy fa il
q = R p'l ..... in ?
ugo 51+-;§g,.=u Ciy T !
Iy

1 n

where k = deg q.
The Expansion Theorem gives us the generating function of the associated
sequence.

.....

i, is the associated sequence for (fi ,..., f,), then

@ fil tin
0..... 0 ¢F ‘
f.vll...uyn(fl 3ees fn) = Z Z Pig..., z',,(yl seecs yn) Cl et
U=0 i 4eeti =u k2% Ci,
i;30

For ¢, = n!, we also obtain a formula for the compositional inverse of a
delta set.

CoroLLArY 10. If p;, . . is the associated sequence for a delta set
(fy 5o ), With compositional inverse (fy ,..., f,), then if ¢, = n!,

®© a tlll tn”
f}' - Z z —a«pll ..... in(o’"', O) i' o [
U=0 &)+ +i,=u J 1
2;20

CoroLLARY 11. If p; . .. is an associated sequence and if f, g € A, then

iyebreepig—k e e
N 21 1
Selpiniy = % Y o
R N e Ciy C5nCiy -y Croin

I3

X S Pigeeci?$ 8 Piyeinrigin s

where m = degf and k = deg g.
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The next proposition is proved in a manner similar to the proof of Proposi-
tion 3.

PROPOSITION 6. Suppose Di,...., IS a strong Sequence in R, with
degp;,,. ..i=h+ "~ +i,. If

iyt b=k o o C
felpi = X ) e
u—m Gy tig=u € Ci,Cir—iy Ci—in

>0

X S Pirs X8V iy, inin’

for all f, g€ A with m = degf and k = deg g, then i,
sequence.

:, Is an associated

In the special case that ¢, = k! for k > 0, Corollary 9 allows us to
derive the binomial identity in R, namely, if p; , . is an associated sequence
in R, we have

pil ..... i,,(al + bl seees Ap + bn)

iﬁiﬂ" Z (il) (in
for all a;, b, K.

For the algebras /A and R, the binomial identity is enough to guarantee
that a strong sequence Pi..i Wwith degp, ., =4+ " +i, is an
associated sequence.

..........

PROPOSITION 7. If p; . . is a strong sequence in R with degp,, . =
i + '+ + i, satisfying the binomial identity, then it is an associated sequence.

Proof. We need only verify the hypothesis of Proposition 6. Let
R[X; yeeey Xp s V1 5. V] be the vector space of polynomials in the variables
X1 yeees X s V1 9oy Y - If f€ A, then f induces a linear operator f, on
R[Xy yeves X » Yy oeres Vul as fOllows. I p = T @ g 5 o, X5 Xyi = o,
then

JoD =3, Qiyoiign,in L1 XE XIS ey,

Similarly, the operator f, is defined by

fyp — Z ail ,,,, i fn<f’ x;l x;n> xil x;n’
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In this notation Proposition 1 becomes

Selxboxby =g, ¥ Y (M)

u>0 ji4ertig=u )
< i<l

Jn

:fwgu(xl + yl)kl e (Xp + yn)k"'
Thus for any p € R, we may write

SZN P> = [oguDP(Xy + Y1 soeer X + Yu).

Choosing p = p; ,...,;, and using the binomial identity gives the result.
The connection—constants problem has a similar solution in R,

ProrositioN 8. If p; . . is associated to (f,....f,) and i,
associated to (gy ,.-., gn) and if

k
Py, Z:,

Z ‘151.....]'"%'1....,:‘,.
dybes ety
i

then the sequence
k . .
— J1 ... y?
Fivorin = 3. Y Ayl Xy

is the associated sequence for

(fi1ses Badsees S 81 5eves 8-

367

k A
n R O A
(%) ot o gy

The associated sequence of a delta set can be characterized as before.

THEOREM 12. A strong sequence p;

(f1 seer ) if and only if

(D &P i) = Sipe o B

. . Co e 0 o
Q) [ faPaiy = e Pigyiieeie SO

i is the associated sequence for

»
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COROLLARY 12. If Pi,,....i, is an associated sequence, then for fel’
we have

Sl P = 2, % Ciy " Cin

u=m jiteeHi=u Ciy """ Cipliy-gy T €
ii20

X SN Piyririg) Piyminanrig—in *

7-1177.7:

Finally, we remark that the notion and properties of the Sheffer sequence
in R are analogous to those in P.

11. THE TRANSFER FORMULA FOR DELTA SETS

The most elementary delta sets are of the form
Ji =aih + o+ aaty,
where det(a; ;) # 0. If (b; ;) is the inverse matrix to (a;,;), then
fi = bty + - 4 byt

The associated sequence p;

i, for (fy,....fs) is the conjugate sequence
for (f; ..., f) and so

yteetiy, <f_51 ...f_jn | xil xi") . X
1 n 1 n J1 ... T
pll """" in T Z Z Ci " Cs xll xn"
u=0 Gt ti,—u i J

72

- Z <f{1 PN len | x'll.l . x:.ln> le . ;
Ci tt Cs

X",
C; 1 n

1 n

n

j1+...+]'l"<i1+‘..+iﬂ J1
>0

In the special case where ¢, = k! for all k£ > 0, we can simplify this
considerably. We have
f:t = (bz',ltl + o+ bi,ntn)ji
ji u! Uy’
== 3 . bz‘ t ) - (b A
ulf+,.§u",=h (u{,..., u,,‘) (biats) (bi.nfn)
so

Firee i = ) ( A ) ( Jn )

! 1 u," n
ey U ey U
e iy 1 200y ¥n 1 300y Y

"t U=,

1 1 n n 1 n 1 L
B L BUnY L. (BYL L. fBUe) ptatretbunt ) glp ety
X (bl.l bl.n) (bn.l bn,n) tl tn .
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Applying this to xj - xi» we must have
il — ull + + uln
in — unl %‘__ “es + uﬂn
as well as
Thus we obtain

<in1 ':;n | x{'x x:in>

. bun

n,1 n.n

and
1... FI LS
= y it o X xa™ 1t eee xin
pll,....’l" j1! "'j ! 1 n
R L e A »
13220
_ 5 y AN
I8 RURFTIR | BPUDUPTE ) BN n)
[/ Uy ! whl u,"!
R R A LT RS 1 n 1 n
jii=0 + +
¥ ¥
ulﬂ+ (ERES u"n___]n
i
il in
1 1 n 1 1 n n
YL o hUn ol BUn UDEretly Uyt
X bl.l bl.n bn,n‘xl xn

= T ) )
ul.,un ..., u,"

Il11+"':i‘141"=il
unl+...:}_unn=1ﬂ

® u' ... (p u” LL(p un' ... (b tn"
X (b1 %)) (bn.ax,) (b1,nx1) ** (b, nXn)

= (bl,lxl + -+ bn.lxn)i1 (bl,nxl + o+ bn.nxn)in-
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We have proved
PROPOSITION 9. Let (fy ..., f) be the delta set given by
Ji=aiat + o a

for i =1,.,n Let (b;;) = (a; ;)" . Then in the special case c; = k! for all
nonnegative integers k the associated sequence to (fy ,..., f,) is

Pireerniy = (OraXs + =+ bopxp) e (byndy + - by pXn)™
If fe A is of the form
f=aty + = + ant, + g,
where g = 0 or g is a power series of degree two, we call
L) =aty +  + auty

the linear part of f.

THEOREM 13 (Transfer Formula). Let (f],....[f,) be a delta set, with
fi = 2L(f) + g;. Then the associated sequence for (f ..., fn) is

&<

Do = Y — % det(a, YOS s fr)

k,>0 Ciytley """ Cipgtky

X (_lkz— il) (_lk: in) B BN e iy s
where 1; . i is the associated sequence for the delta set (ZL(fy),.... £(/)).
Proof. Suppose
fi=aah+ o+ tntn + 8= ZL(f) + 8.
Let u be the continuous automorphism of / defined by
uZ(f) =t

for i = 1,..., n. Then the set (uf; ,..., wfy,) is a diagonal delta set. Therefore,
it has an associated sequence in P given by Theorem 6,

Ciy "' Cin —1—i —1—i, -
Diyoinrip — — a(f"fl seees I-"fn)(l"fn) R (F’fn) 1t xll xnl’

7
(58]

where the action is of the type described in Section 6.
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Now

<(Mﬁ)]l Ve (”’fn)"n I qil '''' 'in> — Ci1 cin8i1,j1 s 81,",:;”

for all integers j; = 0, but any terms in ¢, , i with negative exponents
contribute nothing to this action whenever j; 2 0. Therefore, if we write
Gi,....q 10 denote g, ... with all terms containing negative exponents
removed, we obtain

A (fo )™ | iy = iy €Sy 0 8

Lnrdn

.....

for all integers j; = 0. Moreover, we have

<f]1'1 f;" | M*ﬁi, ..... in> - <Hfil f;”\ Qil ..... i,,>
= (" - W oyt
=S ci; e c 811 i ree b’,-,, in
and so pu*g; . . Is the associated sequence for (f;,..., fn)-

Now uf; = t; + pg; , where ug; = 0 or ug; is a power series of degree at
least two. Therefore, thinking of uf; as being in P, we have

i = 3 (T )

Te; 20 7
and so
. Ci,..., —1 — -1 — i"
Gigo.osin = 25 O(fy 5eens an) Z ( k 1) ( . )
..... k>0 1 n
X T r;l*"""“"(pgl)kl o (g g e xy!
Cyy ° 1 — i —1 -1
- I Gufy s ) (T 1) o ( )
T e W ) (T n
X (pg)™ o (pga)n XTHHL wer ltEn,
where the action is that of Section 6. It is easy to see that
Giy...vip = ——L——~———a yes ( 1 ( n
, D o e A i) (T ) o)

X (pga) + (ugn)n X oo xpntEn,
where now the action is the one of 4 on R described in this section.

640/26/4-6
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We are left with computing p*§; , ., . If g€, then
QU e gl | Xt e XIS = Qualt e g gxh Xy
= <g'u,,;‘1 t;" | xi'l xf;')
= pl(pTg) 1t X 0
= {(n%) ,lfx ,:’ln | ,u*xi" xi">

— <t;1 aa t:;l [ u—lg#*xil xin>
and so

*pll ., pin __ ,,~1 * 1 . 4ed
pogxX} X = p T gt e x

Finally, since

‘u“la(yfi seeey F’fn) = dEt(ai.i)—l af ""9fn)9

we have

RO = Y —a T G det(a, )t oS e £)

Kpoenrdiy30 Cirtiey T Cipiy
1... ¥alitky |, intk
L R R G F e AT e

where p*xj - xIr is the associated sequence for (ZL(f)),..., L(f.))-

12. THE RECURRENCE FORMULA

In this section we derive a useful recurrence formula for the associated
sequence of a delta set.

If Pi,.....i, is the associated sequence for a delta set (f; ..., /) we define
the shift operators associated with Pi,.....s, (or with (f;,..., /) as the set
of operators denoted by (¢; ..., 6;), where cach ij is the continuous
linear operator on R with

. @G+ Ci;

TITYLI S S 2 5 01 F R TOPN in *
G

i+1

THEOREM 14. The set of continuous linear operators (wy ,..., w,) on R is
a set of shift operators if and only if the set of adjoints (wf,..., w}) defined
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on A has the property that each w} is a continuous, everywhere defined deriva-
tion of /A and there exists some delta set (fy ,..., f,) for which wif; = 8, ;.

Proof. Suppose (wy ,..., W,) is the set of shift operators associated with

the delta set (f7,...,fn)- Then
(11+1) cl >
e 2 TS T

. Pt
i1

= (lj + ]) €y " cinsil»kl 8i5+1.k9’ )
= <k].ff1 ...f;_cj-l fzn | Piyi

and so wif¥ - fln =k, ff - fE7L . fEa Since w; is continuous, so is
wf and thus wj = 0/df; is a continuous, everywhere defined derivation
on . Also, it is clear that w}f; = 3§, ;.

For the converse, suppose (wi", ., w¥) is a set of continuous, everywhere
defined derivations on A, and w}f; = 3, ; for the delta set (f; ,..., f,). Then
if i, is the associated sequence for (f; ,..., f,) we have

<ff1 f’,;" | W;iPi..... i,,> = <kj,-f]f1 "’fz-c"-1 fﬁ" lPil ..... i,,>

(1, 1) Ci,
= <f ’ _— ———— Diy,....i+,., 1:,,>
Ci;1
and-so by the spanning argument
G+ 1) Ci;
Wiyt = 5 Piiilda
$5+1

and since w; is continuous, we conclude that (w, ,..., w,) is the set of shift
operators for (fy ,.... fn)-
The chain rule for these derivations is easily established.

ProposiTiON 10. If (01‘1 yores 9,”) and ((),,1 yees OQ") are sets of shift operators,
then

07, = 3 (67,80 05,
i=1

Proof. This follows from the fact that 0}; is a continuous derivation,
that any element of A can be written as a convergent sum in terms of the
form gf1 -+ gk« and that

ef,gk = Z (ef,gz g.glc .

We can now express one set of shift operators in terms of another.
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THEOREM 15. If (b, ,..., 0;) and (0a, 5.5 b5,) are sets of shift operators,
then

3

ij = 991(9.;‘; gl)'
1

[

Proof. 1f pe R and he /A we have

Chibsp> = <07k 1 p>

~( ;1 (Oh)07 2 ‘p>
— é O5h | (6789 p>

= Z (h 99,»(9;:5’1') )2

:<h

and the result follows from the spanning argument.

Y. 0,058 p)
i=1

CoroLLARY 13 (Recurrence Formula). If (6, ..., 0;) and (0, 5+ 0,)
are sets of shift operators and if (f; ,.... f,) has associated sequence p; ,. ... ,
then

@+ Dy
Cij+1
The most useful version of the Recurrence Formula is for ¢, = k! for all

k>0and g, =1t for i = 1,..., n. Then 9% is multiplication by x; and
we have

CoroLLARY 14 (Recurrence Formula). In the case ¢, = k!, for all
k>=0if ((9,1 yeens Bfn) is a set of shift operators and if (1, ,..., [.) has associated

.....

where ot,[of; = 0ft; .
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13. EXAMPLES AND APPLICATIONS

We will compute the associated and conjugate sequences for some classical
examples. We will restrict our attention only to the algebras A and R,
preferring to leave other examples to a forthcoming paper.

Most of the classical examples arise from the special case where ¢;, = k!
for all k == 0. However, it should be noted that this is not the only important
case. In particular, the case ¢;, = 1 for allk 2> Oleads to some very interesting
results, but we must postpone a discussion of these.

For the most part our examples consist of delta sets (f;,..., f,) in which

fi = ZhZ),

where .%; = Z(f;) is the linear part of f; and where & = A(T) is a power
series in the variable 7 which has nonzero constant term. In this situation
we may greatly simplify the Transfer Formula.

First, let us recall that the sequence r; ,.. ; was defined as the associated
sequence for the delta set (&, ,..., %,). Moreover, we saw that (since ¢;, = k!)

Figoosiy = (bra%y + = + bin,xn)il o (bpaxy + v bn,nxn)i"-
If we write

rp=biixy 4+ A by X,

then

and

Let us consider the Transfer Formula in this setting. First we have

o _ 2%
ot;, oy

WL + 2 2) 550 = 0, (ML) + LH(2))
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and so
Oy seer Jn) = (det a;)) T] (H(F) + LH' (&)
j=1
Also, since

we see that
g = (Th — " (&)
Finally,
cCii (_lk_ ij) - (—kl') -
g4k ; i i
and

ij+k;
?

= w#) + gy ¥ S (T —0)" &) gy

J

Z l)k

= (WZ) + LH (L)) Z (h — D¥ (B)G; + ks

= (L) + L (L) z (T o=@

= (WF) + LH (L) (L) r},

where A~1-% is a power series in 7" with nonzero constant term. We may
write this suggestively as

z - 1.

However, there is yet another useful form. It is easy to verify that if f is
any power series in 7, then

F'@)ri = (& r; — rf(H)]rf
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Therefore, we have
(L) + LH (LN (L) ry

= KLY 1 — (L) L) 7!
= L) rp — (Y (L) r?
= LY 1) — L) 1y — (B ™
= rh~ (L) ry

We summarize our results in

THEOREM 16. Let (f; ,..., f) be a delta set with

fi = Zh(Z)

Jor some power series h = h(T) with nonzero constant term and where
F = Z(f;) is the linear part of f; . Then in the case ¢, = k! for all k > 0,
the associated sequence p; .. ; for (fy ..., f,) is given by

M) Py = [1 WL + LH (L) KAL) r,

j=1

2 Piyiiiiy, = H rjh“ij(agj) r]z_‘,-_l,

rit = (biiX1 + - by xa)
with (b; ) = A&, ,..., L) and
.,%rji = ir;_l.

We remark that a similar result holds if (f; ,..., f;,) is of the form
fi = L),

where 4; is a power series in T with nonzero constant term for eachj = 1,..., n.
We are now ready to begin our examples.

(1) The forward difference delta set is defined by

fi = ettt iatn

N2

= e —
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To compute the associated sequence we use the Recurrence Formula.
We have

&, = log(1 + 1))
and

o

where (b; ;) = (a; ;). The Recurrence Formula then gives

_P.
= bi.fe %

Noticing that

. — 13!
e—.?jrkz — Z ( 1) 3}%

5T
1 i
=y &N i
130
=(r, — 1) 39‘.1:

it is easy to see that

Pivein = [1 1 — 1) o (s — 15+ 1)

= H (b x; + - + bn,jxn)ij-

We call these the multivariate forward-difference polynomials.
The conjugate sequence to the forward-difference delta set is easily
computed from the definition and the fact that

<e01t1+“'+(‘nfn | xil x;"> — cil C;".
We obtain
f71 . fhl | x
— i f (]1) (]n) (_1)7'14--"+j,‘~k1 ~~~~~ Ty
B=0  F=0 ky kn '

X (al_lkl e an,lkn)il (al,nkl S an,nkn)i",
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which for n = | and q; ; = 9, ; is j,! times a Stirling number of the second
kind. If we write this expression as j;! == j,! S(iy 5e0s 5 3 f1 5-0» Ju) We Obtain

Qytertig ; ;
iy, i, = Z S(ll seees Ip 5 01 90ees ]n) X1 xnn-

=0 jyteebig=u

These are the multivariate exponential polynomials Py (X1 0ens Xn)-

(2) The multivariate Abel polynomials are the associated polynomials for
the Abel delta set

fi = @ity + 4 @y t,) eI

— £
= Le .

In this case A(T) = e and part (2) of Theorem 16 gives

n
Pl P G
Aiyyrori (X1 ey X0) = [[ 1™ ry L

j=1
Since
3% 451 ( i) k 1,—1
€ r 2 k' (g)
k20
i—1
“E e
k=0
= (rJ - ij)l'_la
we have

= T1 Gagxs + - 4 b x )b Xy + = A+ by yx, — i)

The conjugate Abel polynomials are computed from the definition.
They are

+zn < J1 ... 7,,|x "'xi” ) )
Giy,oonty = Z fi f" ll *xil cee yin

Xy

!
u=0  jite-ti=u J 7
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where

Srefrixtean = 8 ([1a) @eteoe Gt
G
k{‘+-E k=i,
X @y, h + o+ an,1jn)i“kll""—k1"
X (aynp + -+ a"‘n‘]‘n)in—knl—..._k”n‘

(3) The multivariate Laguerre polynomials are the associated polynomials
for the Laguerre delta set

f- — ai_]'tl + T + an,jt"

’ al_,-tl + tr + a,,,,-tn — 1
_?].

-1

In this case A(T) = (T — 1)1, and part (2) of Theorem 16 gives
Lil ..... i,,(xl yreey Xn) = H rlj(-gj - 1)” rjj_l‘

i=1

Since (&; — 1)% ri# = e &L%ie~"ir;* we obtain the multivariate version of the
classical Rodrigues formula:

by s ceedh ;s
X g imt n'jz”(aj,ltl + 4+ aj.ntn)zj
% e—(bl,iwl*'"+bﬂ,ixn)(bi'jx1 o by )

From part (1) of Theorem 16 we obtain

L‘Ll ..... i,,(xl 3 xn) = (—l)n H ("Zp - l)ir—l r.fj
=1
g9 i — 1y it _ ‘
B Jl:! k»z—l (k: - l) kjjv (—l)kJ (bi,ixl + e + bn,?'x'n)kj-
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