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1. INTRODUCTION

It is the purpose of this paper to begin the development of the algebra
of formal series in several variables. From the point of view of the present
theory, the natural objects of study are not single series in n variables,
but rather n-sets of series U~ ,... ,fn)'

Let us take the variables to be tl , ••. , tn • Then the counterpart of a delta
series in one variable [that is, a series of the form alt + a2t 2 + ... with
al =F- 0] is a delta set (II ,... ,fn), where jj is of the form

with gj being a power series whose terms are of degree at least two (or else
gj = 0) and where (aj,i) is a nonsingular matrix of constants. These are
precisely the sets of series which possess a compositional inverse. When
(aj.i) is the identity, we call the set (II ,... ,fn) a diagonal delta set. To each
delta set one can associate a sequence of series as in the single-variable
case-a sequence which classically would be termed a sequence of "binomial
type" in several variables.

For diagonal delta sets, we are able to generalize all the theory of the
single-variable case. Thus we are able to study for the first time sequences
of infinite series in several variables with both positive and negative exponents.

However, in the nondiagonal case, some serious difficulties arise in
connection with negative exponents. It becomes somewhat of a problem
even to define (aj.ltl + .-. + aj.ntn)-I in such a way that composition of
series retains needed algebraic properties. Nevertheless, we have reason to
believe that these difficulties are not insurmountable, and we feel close to a
conclusion one way or the other about the existence and usefulness of
sequences of series involving negative exponents. In the present paper
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we restrict our attention to nonnegative exponents for the nondiagonal case.
In this setting the theory generalizes completely.

We have decided to postpone a detailed study of examples and applications
of the present theory to a forthcoming paper. However, regretting somewhat
the total absence of examples in our paper on the single-variable case, we have
elected to give a few examples here, such as a multivariate version of the
Abel and Laguerre polynomials.

One reason for the postponement of a discussion of examples is that in
any single-variable case there may be many possible generalizations to several
variables, and without specific motivation it is hard to know which way to
proceed. Thus it seems pointless to pick arbitrary generalizations and compute
examples for example sake.

In this paper we have merely scratched the surface of the vastly com
plicated theory of formal series in several variables. Not only do immediate
questions remain concerning the present work, but many new directions
present themselves. For example, we have not touched upon the com
binatorial significance of any of the present results. Other directions include
the study of the calculus of residues in several variables and a generalization
to local rings. We hope in time to touch upon all of these.

2. TH'E ALGEBRAS

Let K be a field of characteristic zero. Let r denote the vector space
of all formal series in the variables tl , ... , tn of the form

f= L I*
u=m i 1+ 0

• o+in=u

where ai1 ..... i
n

EK, m is any integer, and where the asterisk indicates that the
sum is a finite one. Under ordinary multiplication of formal series, r is an
algebra.

The degree of fE r is the smallest integer m such that ai1" ... i
n

cF 0 for
some i l , ... , in with i l + '" + in = m. Notice that iff, g E r, then degfg =
degf+ degg.

We let P be the algebra of all formal series in the variables Xl'"'' X n

of the form

p=
k

L I*
v=-oo ;1+" o+in=v

where bj1 •• ".jn E K, k is any integer, and the inner sum is a finite one. The
degree of p is the largest integer k such that b j1 ..... jn cF 0 for some A,..., j.,.
withj} + ... + jn = k. For p, q E P, we have degpq = degp + deg q.



342 STEVEN ROMAN

We put a topology on r by specifying that a sequence fk in r converges
to fEr if for any integer Uo there exists an integer ko such that if k ~ ko
then the coefficient of tIl t~n in fk equals the coefficient of tIl'" t~n in f
for all il ,... , in with i l + + in :(; uo ' We put a similar topology on P.
Namely, a sequence Pk in P converges to pEP if for any integer uo there
exists an integer ko such that if k ~ ko then the coefficient of tIl'" t~n in
Pk equals the same coefficient in p for all i1 + ... + in ~ Uo . Both rand P
are topological algebras.

3. DIAGONAL DELTA SETS

The set (11 ,...In) is a diagonal delta set if

for i = 1,... , n, where gi = 0 or else gi is a power series (that is, has no
negative exponents) of degree at least two. Any element /; of a delta set
has a multiplicative inverse in r. For gi = 0, this is clear. For gi =I=- 0
consider the series

L (_I)k til-kg/'
k;;>O

Since deg gi ~ 2, this series converges in r, and is therefore the multiplicative
inverse of/,: .

If f = L:~", L~+ ...+i"_U ail intII ... t~n and if gl ,... , gn E r we define
the composition of f with gl , , gn as the series

provided the sum converges. If (gl ,... , gn) is a diagonal delta set, then
deg gIl .. ' g~n = i l + ... + in and so the sum will converge and f(gl ,... , gn)
is always defined. Moreover, if (h , In) and (gl ,... , gn) are diagonal
delta sets, then (ll(gl ,... , gn), ...Jn(gl , , gn» is a diagonal delta set. It is
well known that any diagonal delta set has a compositional inverse, that

- -
is, a diagonal delta set (11 ,... In) for which

for all i = I,... , n.
We say that the set Pil .....in in P, where i1 , ... , in range over all integers,
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is a strong sequence if any q E P has a unique representation as a convergent
sum

k

q = I I* ailo ...• i"Pil ..... i" .
U=~OO i 1+ o

• "+in=u

4. AN ACTION OF r ON P

We define an action of r on P. Let Ci be a sequence of nonzero elements
of K for all integers i, and suppose Co = 1. We denote the action ofIE r
on pEP by

<lip)

and set

where Di,i is the Kronecker delta, The action is extended to all IE rand
pEP. Thus if

and

k

P = I

we have

k

<lip) = I

It is clear that <I Ip) = 0 if degl > deg p.
Since <II Xil ... x in) = a· . C· ... C· we have1 n t1 •.•.. t n 11 t n

1= I I*

Also,

k

P = I I*
v=-oo jl+ O "+in=v

<til ... t~n Ip)
Cil ••• Ci

n

viI ... xin
"'I n'

From this it is clear that if <I Ip) = 0 for all PEP, then 1= 0 and if
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<lip) = 0 for all IE r, then p = O. We call this the spanning argument.
It is easy to verify

PROPOSITION 1. !ff, g E r, then

i 1+···+in-k

<fg i X~' ... x;') = l::
u=m

l::* Ci, ... Ci"

j,+"'+j,,~u Cj, ... Ci"Ci,-i, ... Ci"-i,,

where m = degf and k = deg g.

An induction argument gives

PROPOSITION 2. !fir ,... ,fm E r, then

Cj,' ... Cj,,' '" Cj,ffl ... Ci"ffl
ul;;;>?egf, 1,' +"'+1,,' =u,

+ +
Un~ciegfm : •

+ +
itm+"'+inm=un
II II

5. ASSOCIATED SEQUENCES

A strong sequence Pi!' .... i" is called the associated sequence for the diagonal
delta set (Ir ,... ,fn) if it satisfies

for all integers jl ,... , jn and i1 , ... , in .

TH:EOREM 1. Every diagonal delta set has a unique associated sequence.

Proof For the uniqueness, if Pi!' .... i" and qi, .... .i" are both associated
sequences then

00

t:' .. , t~" = L L*
u=m i1+"'+in=u

This follows from the fact that the right-hand sum converges, applying
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both sides to Pi
1

•••••i" gives equality, and that Pi
1
.....i" is a strong sequence

and therefore spans P. Thus

<t:1 ... t~" IPh.....i,.)

<tIkI ... t~n IPil, ....i~)=" "* ~----'~~=-.. <fi1 ... fin Ip )L... L." c, ... C. 1 n h .. · .. i n
u=m i 1+,· '+in=u 7.1 ~n

= L L*

and so p. . = q. .11 , •••• 1n 11 ,., •• 3n .

For the existence, the identity

k k Jk -k . .
<t 1 ... t " Ip. . ) = < 1 ••• f n I XlI ... Xln )

1 n 1,1'.··.tn 1 n 1 n

defines a set Pil' ....in for which degpi
1
.....in = i l + ... + in and t~e on~y

term in Pil i" of degree i l + ... + in is a constant multiple of t~l ... t~n.

Thus Pil' i" is a strong sequence in P. Since

co

fi1 ... f~n = L L:*
u~m kl +' "+k,,=u

we have

. . k k
<f'l ... f'" I XI ... X n)

1 n 1 n tk1 •.. tkn
C "'C 1 n,

k 1 k"

Note that if Pil .....i" is an associated sequence, then degpi
1
..... i" =

i l + ... + in and so

k

L L:* ai1..... inPi1..... i"
V=-OCl i 1+" '+in=V

will always converge in P.
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A convenient device for handling associated sequences is the transfer
operator. IfPil' ....i

n
is an associated sequence the continuous linear operator

Aon P defined by

is called the transfer operator associated with Pi
1
..... i

n
• Notice that A is

defined on all of P, and that A is a bijection.
If Ik is any linear operator on P, we define its adjoint Ik* as the unique

linear operator on r defined by

for allfE r.

THEOREM 2. A linear operator A on P is a transfer operator if and only
if its adjoint A* is a continuous automorphism of r which maps delta sets
to delta sets.

Proof It is clear that if Ais a transfer operator, then A* is linear, one-to
one and onto. The proof of Theorem 1 shows that if A: X~l ... x~n -+ Pi1.....in
is the associated sequence for (h ,... ,fn) then

Thus if g E rand

we have

'"= I I* aklo .... kn<J:l ... J~n I xil ... x~n>
u~m kt +" '+kn=U

So A*g = g(Jl ,... ,In) and A* is continuous, preserves products, and maps
delta sets to delta sets.

For the converse, suppose Ik* is a continuous automorphism of r which
maps delta sets to delta sets. Suppose (h ,... ,fn) is the delta set for which
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P,*fi' .. ,f~" = ti' .... t~... Then if Pi
l

, .... i.. is the associated sequence for
(f1 ,.. ·,fn) and A: X~l ... x~.. -+ Pil ..... i.. is a transfer operator, we have

A*fh ... fin = fh(f- J) ... fin(! J) = til ... tin1 nIl , •.. , n n 1 , •.. , n 1 n

and so A* = p,*.
The important properties of transfer operators are contained in

COROLLARY 1. (a) If'\: xlI '" x~.. -+ Pil ..... i" is a transfer operator,
and Pil .....i. is associated to (II ,... ,fn), then if g E r, we have

A*g = gUl ,... ,fn)'

In particular,

(b) A transfer operator maps associated sequences to associated
sequences.

(c) IfA: Pil..... i. -+ gil .....i" is a linear operator, andPil.....;" is associated
to (II ,.. ·,fn), and qil.....i.. is associated to (gl ,... , gn), then ,\ is a transfer
operator and

Proof (a) Part (a) is proved in the proof of Theorem 2.

(b) Suppose'\: xlI '" x~.. -+ Pip ....i.. '. and ~et gil i.. be the a~sociated
sequence for (gl ,... , gn). Then «,\-1)* gil g~" [ Agil i) = <gil '" g~"1

qi, .....i) = Cil Ci.I3;..i
l

... C\.i. and so ,\gil ,;" is the associated sequence
for «A-1)* gl , , (A-1)* gn).

(c) We have <A*gil ••• gi" I p. .) = <gil'" gi" [ q. . ) =., 1 . n . zl ..... ~n . 1 n zlP",zn

<1'31 •.. 1'3" Ip, .). Thus A*g3 l ••• g3 n = I'JI ••• I'J •• This implies that A*JI In zl .... 'tn 1 n J] In

is a continuous automorphism of r mapping delta sets to delta sets, and so
A is a transfer operator by Theorem 2.

Suppose Pil, .... i" and gil' ....;. are associated sequences and

m

Piio".';, = L L*
u=-c:c i 1+" "+in=u

We define the umbral composition of Pil ..... ;. with gil .... ,i" as the strong
sequence

m

Pil .....i.(q) = L L* aiio ....i"gh..... i" '
u=-oo i 1+"' '+in=u

which converges in P.
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The content of the next theorem is that the map which associates to each
diagonal delta set its associated sequence is a group homomorphism from
the group of diagonal delta sets under composition to the group of associated
sequences under umbral composition.

TmOREM 3. /f(ft ,· .. ,fn) has associated sequence Pil .... ,in and (gl ,... , gn)
has associated sequence qil .....in then (ft(gl ,... , gn), .. ·,fn(gl ,..., gn» has
associated sequence Pil .....in(q).

Proof If A: XiI'" x~n -+ qi1 .... ,in is a transfer operator, then Apil' ... ,in =
Pil' ... ,in(q). Moreover, (A-l)*f = f(gl ,... , gn) and so

<f~l(gl ,... , gn) ... f:n(gl ,... , gn) i Pilo .... iJq»

- <fit .,. fin Ip )
- 1 n iV····in

and the theorem is proved.
If(ft ,... ,fn) is a diagonal delta set, and if qi1 ..... in is the associated sequence

for the compositional inverse (Jl ,... ,fn), then

i 1+"'+in

% ..... i n = I I*
u=-oo i 1+" -+in=u

We call qi1 .....i
n

the conjugate sequence for (ft ,... ,fn)' Thus the conjugate
sequence for a diagonal delta set is the associated sequence for its com
positional inverse.

COROLLARY 2. /f Pil' ....in is the associated sequence for (/1, ... ,fn) and
qi1 .....in is the conjugate sequence for (ft ,···,fn) then

One of the key results of this section is

THEOREM 4 (Expansion Theorem). Let (/1, ... ,fn) be a diagonal delta
set with associated sequence Pi1, ....in . Then if g EO T, we have

g = I I*
u=m i 1+···+in=u

where m = deg g.
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Proof It is clear that the sum on the right converges, and applying both
sides to pj1' ... ,jn gives equality. Therefore, the spanning argument proves
the theorem.

The Expansion Theorem has some very important corollaries, which we
examine next.

Suppose U1 , •.. , Un are integers and a1 , ... , an E K. The evaluation series
E"l""'''n in r is defined bya 1 ,··"a1l.

€Ul.···.U n ==::
a.l·····a n

U=U1+"'+Un it+:"+in=u
'i>Ui

This series has the property that

if ji < Ui for any i,

if ji?' Ui for all i.

Moreover, if <E~;:::;:a"nn Ip) = 0 for all evaluation series then p = o.

COROLLARY 3. If Pil •...• i
n

is the associated sequence for (ft ,... ,fn) and
if q E P, then

k

q = L: L:*
u=-co i 1+" '+ifl=U

where k = deg q.

Proof From the Expansion Theorem we have

applying q to both sides gives

and since U1 , ... , Un and a1 , •.. , an are arbitrary the proof is complete.
We may use the Expansion Theorem to extend Proposition 1.

COROLLARY 4. If Pil ..... i
n

is an associated sequence and iff, g E r, then
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it+"'+in-k

<Ig IPi] .....i) = L
u=m

x <I IPi, .....in>< g IPi]-i].....in-i)·

Corollary 4 has a converse.

PROPOSITION 3. Suppose Pi] i
n

is a strong sequence in P with the
property that degpi, .....in = i1 + + in and the only term in Pil, .... ;n 01
degree i1 + .. , + in is a constant multiple 01 xii'" x~n. 1/

i 1+"'+in-k

<Ig IPil .... ,;n> = L
u=m

___C...:.;il ... Cin

x <II Pil .....i)<g IPil-i, .....in-i)

lor allI and g in r with m = degland k = deg g then Pil ..... in is an associated
sequence.

Proof For any ex = 1,... , n and any integer i~ we define the seriesh.i", by

<j~.i~ I Pkl.....k) = Ci/)i~.k", n SO'''8 .
8,o~

We would like first to show that (h.1 ""'/n.1) is a diagonal delta set. Now

<h,l Ih,..... k >= C10l,/(~ L 00 ."13
8#",

and if i1 + ... + in ~ 0, we can express xii ... x~n as an infinite sum of
h,.... ,k

n
which includes only those for which k 1 + ... + k n :~ O. Thus

degh.1 ~ 1. Similarly, if i1 + ... + in = I we may express X~l ... x~n in
terms ofhi'''' .k

p
, wh~re either k1 = i1 ,... , k n = in or else k 1 + ... + k n < I

and so <h.1 I X~I ... x~n> = 0 unless i", = 1 and i8 = 0 for all f3 =Ie ex. Thus
degh.1 = I and the only term in h.1 of degree I is a constant multiple
of t", and so (f1.1 ,... In.1) is a diagonal delta set.

Now consider the product h,Zj;,.i~' We have

k}+· •• +kn-ia:

<h.z",h.i", Ihl.....k) = L

= Cz . Oz . k TI 00 ko:+Jo: n+Jo:. 0: .8
8,o~
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and the spanning argument implies that.t:x.!Ja:.ia: = .t:x.!"+i,, and sok!" = !~~l'
Finally,

Continuing in this way we obtain

<fil '" fin I p )
1 n' kl> .... k n

and so P"l' ...."n is the associated sequence for (!1.1 ,".,!n.i)·
In the very important special case that Ck = k! for k '?: 0, it is a routine

calculation to show that the evaluation series satisfies

For pEP we let fi E P be defined by

=0

for i l , ... , in '?: 0,

otherwise.

Thus fi consists of that part of p which contains only nonnegative exponents.
Then <E~;::::?an Ip) = <E~;::::?an Ifi> and we have by Corollary 4

tt=O
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We may write this more suggestively as

for all ai, bi E K. We call this the binomial identity.
If Pi

1
•••••in and qi

1
..... i n are associated sequences, and if

"
Pil..... i" = L L ah..... inqilo ....in '

h~-'" il+"'+in=u

then the connection-constants problem is to determine the constants ail' ....in .
One solution is given by

PROPOSITION 4. If Pil .....in is associated to (j~ ,... ,fn) and qil .....in is
associated to (gl ,... , gn) and if

Pil..... in = L L ah.....inqil..... .in
U=-Q'J i 1+···+jn=U

then the sequence

(*)

k

fil •...• i n = I I*
U=-()'J jl+ O

• o+in=u

is the associated sequence for

6. ANOTHER ACTION OF r ON P

We wish to find a method of computing the associated sequence of a
diagonal delta set. To this end we define another action of r on P, which
we denote by juxtaposition. Our motivation in defining this action is the
requirement that

<ff gx1 l
... x~n> = </g I x1' ... x~n>.

Expanding the right side using Proposition ], the spanning argument forces
us to take
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il+···+i,,-k
gX~1 '" <n = I

U=-O')

Thus

Moreover, we have

PROPOSITION' 5. Iff, g E r, then

f(gx~l .,. x~,) = (fg) x~' '" x~n = (gf) x~' ... x~~' = g(fx~' .,. x~').

Proof If hEr, then

<h If(gx~l ... x~,» = <hf Igx:' ....X;:>

= <hfg I X~l .. , x~'>

= <h I (fg) x~' ... <n>

and so f(gxil '" x~) = (fg) xiI ... X~l. The rest is evident.
We can characterize associated sequences by means of this new action.

THEOREM 5. A strong sequence Pi
l

" ... i" is the associated sequence for
(f1 ,... ,fn) if and only if

Proof Suppose Pil.....i" is the associated sequence for (f1, ...,fn). Then

<fkl ... fk n I fit ... fi np >- <fkl+i, ... fk,,+i n IP >
1 n 1 n ito ...• i n ~ 1 n i1.···,in
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and the spanning argument completes the proof. Conversely, if (I) and (2)
hold, then

<JiI ... fin IP ) = (t °... t°I Cil '" Cin p.. .. )
1 n i , ..... i" 1 n C. . ... C. . '1-1, ... ·.'''-Jn

Zl-Jl 'In-Jn

Theorem 5 and the Expansion Theorem imply

COROLLARY 5. If Pit ..... i
n

is an associated sequence, then for fE r,

where m = degf

In the important special case that

(_l)k+l

(-k - 1)1

for k:): 0,

for k < °
it is easy to show that if i1 , •.. , in < 0, then

eO O XiI ... Xi" = (x + b )i1 .. , (x + b )in •
bt , •bn 1 n 1 1 n n

Thus Corollary 4, withf = e~,,::::.~:n and g = eg;;:::?b
n

gives, for the associated
sequence Pit' .... in '

for all integers UI , ... , Un , all ak , bk E K, and all negative integers i1 , ... , in .
This may be written in the following suggestive form:

for all hI"'" bn E K and all negative integers i1 , ••• , in. We call this the
factor binomial identity.
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7. THE TRANSFER FORMULA

355

In this section we derive a formula for the associated sequence to a
diagonal delta set. For j = 1,... , n let Bj be the continuous operator on P
defined by

. . (ij + 1) Ci· ., 1 . .
B.X'l ... x'" = ' X'l ... X';-lX"+ X'Hl ... x'"

J 1 n Ci; + 1 1 1-1 1 1+1 " •

Then

k . . (ij + 1) Ci' k k . . .
(8*t k1 ... t " I X'1 ... x''') = ' (t 1 ... t " IX'l ... x';+! ... x''')

J 1 n 1 n Ci; + lIn 1 1 n

<a k kl' .)= -- t 1 ... t" X'l ... x'"8t
j

1 n 1 n'

where %t j is the partial derivative operator on r. Thus 8j = %t} •
If fl ,...In E r, the Jacobian aUI ,...In) is the formal series

a(A ,...,j~) = det ( a~. Ji).,

THEOREM 6 (Transfer Formula). IfPi!' .... i" is the associated sequence for
the diagonal delta set Ul ,...In) then

Cil ... Cin a( I' r..) 1-1-i1 1-1- i" -1 -1
Pi1..... i" = cn Jl , ... , n 1 ... n Xl'" X n •

-1

Proof We will show that the right-hand side satisfies the conditions of
Theorem 5. It is easy to see that the right-hand side is a strong sequence,
and condition 2 is straightforward.

We must show that

(a( I' I' ) 1-1- i 1-1- i I -1 -1> n ~ ~Jl"",Jn 1 " ... " " Xl ... x" = C-10 i 1.O"· 0i".O-

Since jj = t j - g} we have

and writing afor o(ft ,...In) and D j for %tj ,
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(;1-i1-k1 ••• t;1-in-knX11 ... X;l)

= <8 L (i1 t k 1
) ••• en t kn)g~1 ... g~n I

kl' •..• kn>O 1 n

en < ( k
1

gk
n

) I' .)= -1 "D'" D 8~ ... _n_ xt1 •.• x tn •

C ... C ~ k1 k n k , k' 1 n
i 1 i k k '0 1 . n •

11 1.···. n""'"

So if we write gNki ! = h~i, we are left with showing that

L Dk1 ••• Dd8h:1
'" h~n] = 1.

k1.... ·kn >0

This fact has been proved by S. A. Joni but we repeat it here for the sake
of completeness. We have 8 = det(Si.j - Digj ) and so

If A = {I,... , n}, then this determinant is equal to (see Muir, p. 109)

" (-l)lal (n h~i) det(D .hk ;+!) ..1- ttl (t.l)eaxa
Il{;A ,eA-a

and so we must show that

Note that if k, = 0, then h~i = 1. If we think of b h A as the set for which
ki = 0 if i E A - b, we may write the above sum as
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where if a = b = 0 the sum is 1. This equals

357

L L (_I)la l L (n D:i)Cn D:i+1)[Cn h:i+1) det(Dih~;+1)(i.j)Eaxa]
b~ A a~b k,o:~O ~Ea tEb-a lE:b-a

~Eb

= I I (n D~i) I (_I)lal (n Di)[( n h: i+1) det(Dih:;+l)(i.jIEaXa]·
b~ A "'0>0 iEb a~b iEb-a iEb-a

~Eb

The following lemma will then complete the proof.

LEMMA. If Ii E r for i = 1,... , n, then for b, a nonempty subset of A,

Proof of lemma. We may assume that b = {I,... , m}. After all differentia
tion is performed, each term is of the form

where {BI , ... , Bm} forms a partition (with possibly B i = 0) of {DI , ... , Dm}.

In fact, for a fixed set a C b and for each permutation a of a, the determinant
produces terms of this form for which Da(i) E Bi for all i E a; that is, terms
of the form

(-l)lal (-l)a (n CPa(ji)Cn Cjlj) ,
tEa JEb-a

where {ci , ... , cm} is a partition of {Dj}jEb-a' Moreover, all contributions
from set a are of this form for some a. However, as the set a varies, we count
each term of the above form more than once. Consider a fixed partition
{BI , ... , Bm } of {DI , ... , Dm } and the corresponding expression

If there are r cycles (Xl , ... , (Xr in b for which D~.(j) E Bj for all j for which
(Xi(j) is defined, then this expression is counted' once for each product of
any of the cycles (Xl , ... , (Xr' The corresponding set a is the union of the
cycles involved in the product. Moreover, if a is the product of k cycles,
then (-l)lal(_l)a = (-l)k. Thus the above expression is counted

f (m) (_l)k = 0
k=O k

times, and the lemma is proved.
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8. SHEFFER SEQUENCES

A large number of sequences occurring in the literature are not associated
sequences, but are closely related to them. IfPi, .....i" is an associated sequence
in P and if g is a series of degree 0 in r, then the sequence

is called the Sheffer sequence for Pi, ..... ;,,, relative to g.
The following lemma will help characterize Sheffer sequences.

LEMMA. Suppose L is a linear operator on P with the property that

fLp = Lfp

for all fEr and pEP. Then there exists a series IE r for which

Ip = Lp

for all pEP.

Proof We have

<L*(f) Ip> = <fl Lp>

= <J IfLp>

= <J I Lfp>

= <L*(l) Ifp>

= <L*(1)fl p>

and so

L*(1)f = L*(f).

Then if we set I = L*(l), we have

<flip> = <fll p> = <L*(f) Ip> = <fl Lp>

and so

Ip = Lp.

We can now characterize Sheffer sequences.

THEOREM 7. A strong sequence Si, .....i" in P is a Sheffer sequence if and
only if there exists a diagonal delta set (fl ,....,f"') for which
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Proof If Sip .•. ,i.. is a Sheffer sequence then there exists an associated
sequence Pil .... ,i.. for which

Then if Pi1 ..... i" is the associated sequence for (fl ,.. ,In) we have

f~l ~ .. f~nSil•... ,in ::=:: fit ... f;gPit ..... i n

- giiI ... jinp
~ 1 n iV .... i n

For the converse, define the continuous linear operator L by

where Pip .... in is the associated sequence for (fl ,... In)' Then

f i 1 ••• finLp ~ fiI ... fins
1 n iV·· .. i n - 1 n i1.···.in

and so

Lf=fL

for all fEr. The lemma then implies that there exists IE r for which

Since deg I = 0 the sequence Sil .... ,i
n

is a Sheffer sequence.

9. DELTA SETS

Suppose h ,· .. In E r are of the form



360 STEVEN ROMAN

where aj,i E K, gj = 0 or else gj is a power series of degree at least two,
and det aj,i oF 0, Then it is well known that (II ,...,1n) has a compositional
inverse (J1, ... ,Jn), which is of the same form as (II ,... ,fn). We call such
sets (j~ ,... ,fn) delta sets.

Unfortunately, our work up to now is not general enough to deal with
delta sets. This is mainly because an element jj of a delta set does not
necessarily have a multiplicative inverse in r. It is possible to generalize
the algebra r and thereby introduce a multiplicative inverse. However,
all attempts made so far to do this seem to produce more difficulties than
they eliminate. We are forced therefore to restrict our considerations rather
than to extend them.

Let .Ii C r be the algebra of all formal power series in the variables
t1 , ... , tn . Thus ifIE.Ii we have

ex;

1= L

where m is a nonnegative integer, and the inner sum is automatically a
finite one. Let Rep be the algebra of all polynomials in the variables
Xl"'" X n . Thus pER may be written

Ie

P = I I
~~O jl+': ·+jn~v

Ji>:O

Most of the definitions and results of the previous sections carryover to
the subalgebras .Ii and R. Therefore, we will proceed informally, giving
proofs only when there is a significant deviation from the earlier theory.

We keep the same definitions of degree, strong sequence in R, composition
in .Ii and umbral composition in R. Moreover, we keep the same definition
of the action of r on P as described in Section 4. In other words, if lEA
and pER, we think of the action <II p) as the one defined for IE rand
pEP. Thus

1= I L
U=1n i 1+.. '+in=u

ij~O

and

k

P = L L
v=O i 1+":,+jn=V

Ji~O

<til t~n Ip)

Cil Cj"

The spanning arguments still hold for A and R, and so does Proposition I.
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However, the action of r on P described in Section 6 needs some modifica
tion. We take

=0

and extend this to all of A and R. If g E A we have

otherwise,

J1+"'+Jngxi1 .,. <n = L
u=m

as well as

and

10. ASSOCIATED SEQUENCES FOR DELTA SETS

The associated sequence for a delta set (/1 ,.. .,fn) in A is the strong sequence
Pi, .... ,in satisfying

<jh '" fin Ip. . >- c· ... co· . ... o· .
1 n· 1-1.···. t n - 1-1 1n 11.31 l,n·Jn

for all nonnegative integers jl ,... , jn and i1 , ... , in . Our first task is to show
that the associated sequence exists and is unique.

Suppose (/1 ,... ,fn) is a delta set. Then since det ai,j =F 0 we conclude
that any g E A can be written as a sum,

g = L
U=1n i 1+·:·+in=u

tj~O

(*)

for some m ;): 0 and ai1 ..... in E K.
Now suppose Pi1 .....i. is a set of elements of A, where i!> ... , in range

over all nonnegative integers. Thus Pi1 ..... i
n

need not be a strong sequence.
Let Pil' .... i

n
have the property that
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Then if we apply both sides of (*) to Pi, .....i
n

we obtain

(g IPit }n)
cit c}n

and so

00

g = L: L
u=m i 1+,:o+in =u

l;~O

We would like to conclude that the set Pi, ..... i
n

is a strong sequence in R.
That is, that each q E R can be written as a unique sum

k

q = L L ai" ... .inPi,..... i n
u=O i,+···+i.=u

i;;;;'O'

for some k ;?: 0 and ai, ..... ,,, E K. Recall that the evaluation series €~;::::~an is
defined by

for all il , ... , in ;?: O. It is clear that jf p, q E R and <€~~::::~an Ip) =
<€~;::::~an I q) for all al , ... , an E K then P = q. Since

we conclude that for any q E R with deg q = k,

= <€~·;:::.~an IL. L. <J::.,,:!.~cn.1 q) Pi, ..... i,,)
u=O Zl+':"+tn=U 11 t n

tj~O

and so

k

q = L L
u=O i 1+': "+in=u

1.j~O
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Moreover, if

q = L. L. ait .....inPit .... .in
u=O i 1+':'+in=u

Zj#O

then by applying fit ... f~n to both sides we see that

<fit ... f~n I q)
ai t .....in = c· .. · c·

11 )n

363

and thus the coefficients are uniquely determined. So Pit .....in is a strong
sequence.

THEOREM 8. Every delta set has a unique associated sequence.

Proof The uniqueness proof is the same as that in Theorem 1. The
identity

defines a set Pit ..... i
n

in R and as in the proof of Theorem 1 we have

By previous remarks the set Pit .....i.. is a strong sequence in R and therefore
is the associated sequence for (/1 ,... In)'

It is clear from the proof of Theorem 8 that deg Pit ..... i .. ~ i1 + + in.
To see that degpit' ..... i .. =. i1 + ... + in we must show that Pit' .i.. has
a term of the form t~1 ... t~n for which it + ... + in = i1 + ... + in. That
is we must show that <tit ... tin! p. . ) = <Ji t .. , Jin 1 XiI •.. xin) is, 1 n, t 1 , •. •• In 1 n 1 n

different from zero for some 11 + ... + in = i1 + '" + in .
Clearly, we may assume that

Then we have

and so

n

t~t ... t~n = TI (auIl + ... + ai.nfn)in

i~1
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for some constants (Xu, •.... u,. • Thus for some u1 , ... , Un with U1 +- ... +- Un =
i1 + ... + in it must be true that If' ... I~" contains a term of the form
t~l ... t~,..

The transfer operator associated with Pi, .....i" is the linear operator A
defined by

and the analog of Theorem 2 and its corollaries hold for A and R.

THEOREM 9. A linear operator A on R is a transfer operator if and only
if its adjoint II* is a continuous automorphism of A which maps delta sets
to delta sets.

COROLLARY 6. (a) IfAx~l '" x~,. -+ Pip ....i" is a transfer operator and
Pi, .... ,;,. is associated to (ft ,... In), then ifg E A,

In particular,

(b) A transfer operator maps associated sequences to associated
sequences.

(c) If A: Pip i" -+ qi, i,. is a linear operator, and Pi, ..... i,. is
associated to (h , In) and qil i,. is associated to (gl ,... , gn) then A is a
transfer operator and

II*gil '" gin = fi 1 ... fin.
1 n 1 n

THEOREM 10. If(h ,.. ·In) has associated sequence Pi, ..... i" and (gl ,... , gn)
has associated sequence qi, ..... i", then (!t(gl ,... , gn), .. ·Jn(gl ,... , gn)) has
associated sequence Pi, ..... i,.{V.

The conjugate sequence for the delta set (ft ,... ,fn) is the associated
sequence for (Jl ,... ,fn) and so equals

i1+···-j--i n

qi,.....i" = L L
u=o i1+"'-Un=U

ii>O

(f il .. ·finlxil···xin). .
1 n 1 n xh ... XJn.

C .... C. 1 n
J 1 In

COROLLARY 7. If Pip .... i,. and qi, .... ,;,. are the associated and conjugate
sequences for (h ,... In), then

P. . (q) = Xil .. , Xi" = q.. (p).
?l.···.ln • 1 n ~l .. ··,'n --
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We also have the all important Expansion Theorem and its corollaries.

THEOREM 11 (Expansion Theorem). Let (fl, ...,fn) be a delta set with
associated sequence Pi!' .... i

n
• Then ifg E r, we have

g= L L
u=m i1+ 0

: '+in=u
';;;>0

where m = deg g.

COROLLARY 8. If Pit' .... in is the associated sequence for (ft ,... ,fn) and
if q E P, then

k

q = I L
u=o i,+':'+in=u

Ji>O

where k = deg q.

The Expansion Theorem gives us the generating function of the associated
sequence,

COROLLARY 9. If Pi!' ....i" is the associated sequence for (fl, ... ,fn), then

For Cn = n!, we also obtain a formula for the compositional inverse of a
delta set.

COROLLARY 10. If Pi, ..... i" is the associated sequence for a delta set
(ft ,... ,fn), with compositional inverse (/1 ,· .. ,fn), then ({ Cn = n!,

COROLLARY 11. IfPi, .... ,;" is an associated sequence and iff, g E A, then

where m = degf and k = deg g.
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The next proposition is proved in a manner similar to the proof of Proposi
tion 3.

PROPOSITION 6. Suppose Pi,. .... i
n

is a strong sequence in R, with
deg Pi i = il + ... + in . If1····· n

i1+···+in-k

<fg IPi ..... 1 >= I
u=m

for all f, g E A with m = degf and k = deg g, then Pi,. ....i
n

is an associated
sequence.

In the special case that Ck = k! for k ~ 0, Corollary 9 allows us to
derive the binomial identity in R, namely, ifPi, .....i

n
is an associated sequence

in R, we have

for all ai, bi E K.
For the algebras A and R, the binomial identity is enough to guarantee

that a strong sequence Pi,,, ..• ;n with degpi
1
..... i

n
= il + ... + in is an

associated sequence.

PROPOSITION 7. If Pi1 .....i
n

is a strong sequence in R with degpi, .....i
n

=
i l + ... + in satisfying the binomial identity, then it is an associated sequence.

Proof We need only verify the hypothesis of Proposition 6. Let
R[XI ,... , Xn , YI ,... , YnJ be the vector space of polynomials in the variables
Xl"'" X n , Y1 ,... , Yn' If fE A, then f induces a linear operator fx on
R[XI ,... , Xn , Yl ,... , YnJ as follows. IfP = L ai, .....;n.;,.....;n xi' '" x:"'yi1 .. , y;n,
then

Similarly, the operator fy is defined by
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In this notation Proposition 1 becomes

367

<fg I X~l ... x~n> = fxgy L L (k.1) ..• (k
J
.nn) X~l .,. x~ny:l-h '" y~n-in

u:;;,O il+"'+Jn~U 11
O~jl'<kl

Thus for any pER, we may write

Choosing p = Pi!' ....i
n

and using the binomial identity gives the result.
The connection-eonstants problem has a similar solution in R,

PROPOSITION 8. If Pit' ....i
n

is associated to (it ,·.·,fn) and qil .....i
n

is
associated to (gl ,... , gn) and if

k

Pil ..... in = L L ah.....inqh.....in
U~O i l +.: '+in=u

1i~O

then the sequence

k

ri1 ..... i n :::::: L
U~O i l +" '+in=u

ji'#O

is the associated sequence for

The associated sequence of a delta set can be characterized as before.

THEOREM 12. A strong sequence Pil ..... i
n

is the associated sequence for
(it ,· ..'!n) if and only if

k = 1,... , n.
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COROLLARY 12. If Pi!" ...in is an associated sequence, then .for .fE r
we have

Finally, we remark that the notion and properties of the Sheffer sequence
in R are analogous to those in P.

11. THE TRANSFER FORMULA FOR DELTA SETS

The most elementary delta sets are of the form

/; = aUtI + ... + ai,ntn ,

where det(ai,i) =Ie 0. If (bi,j) is the inverse matrix to (ai,i)' then

Ii = butl + '" + bi,ntn .

The associated sequence Pi!' ....in for (II ,... ,fn) is the conjugate sequence
for (JI ,···,In) and so

u=o

L
i t +"· ·+jn~il+·· o+i l1

ji~O

c· .,. c·
31 I n

<J it ... Jin IXi! ... Xin). .
I n I n X J ! ••• X'n.

C.. ,. C· I n
31 I n

In the special case where Ck = k! for all k ~ 0, we can simplify this
considerably. We have

j{i = (bi,ItI + ... + bi,ntn)ii

so
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Applying this to X~1 ••• x~n we must have

as well as

jl + '" + j" = i1+ .,. + in .

Thus we obtain

+ +
"1'n+ ...+Un11= In

II II
i1 in

u1 u1 110 nX b 1 ... b " ••• bU1 ... bU"
1.1 l.n n.l n,n

and

Pil> .... i" = L
11+"+/"=i1+"'+i,,

li~O

+ +
Uln+'·'+unf'l.=Jn
II II
i1 in

u1 1 nIl n nX b 1 ••• bUn ... bU" X U1 +'''+U" ." XUl +. "+U,,
1,1 1.n n,n 1 n

369
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We have proved
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PROPOSITION 9. Let (!I ,. .. ,fn) be the delta set given by

for i = 1,... , n. Let (bi,i) = (0;,;)-1. Then in the special case Ck = k! for all
nonnegative integers k the associated sequence to U1 , ..,In) is

If fE A is of the form

f = a1t1 + ... + antn + g,

where g = 0 or g is a power series of degree two, we call

the linear part of f

THEOREM 13 (Transfer Formula). Let (!I ,... ,fn) be a delta set, with
/; = .P(/;) + gi' Then the associated sequence for (!I "",fn) is

where ri
1
.....i

n
is the associated sequence lor the delta set (.P(!I), ... , .PUn»'

Proof Suppose

/; = ai.1t1+ '" + 0i,ntn + gi = .P(/;) + gi .

Let fL be the continuous automorphism of A defined by

fL.P(/;) = t i

for i = 1,... , n. Then the set (fL!I ,... , fLln) is a diagonal delta set. Therefore,
it has an associated sequence in P given by Theorem 6,

where the action is of the type described in Section 6.
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for all integers ji ;?: 0, but any terms in qil .... ,i
n

with negative exponents
contribute nothing to this action whenever ji ;?: 0. Therefore, if we write
ih, ... .,i

l
to denote qil" ... i

n
with all terms containing negative exponents

removed, we obtain

for all integers ji ;?: 0. Moreover, we have

and so P.*ijil ..... in is the associated sequence for (/1 ,..., In)'
Now p.Jj = ti + p.gj , where P.gi = 0 or P.gi is a power series of degree at

least two. Therefore, thinking of p.jj as being in P, we have

and so

where the action is that of Section 6. It is easy to see that

where now the action is the one of A on R described in this section.
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We are left with computing I-"*iji
1
..... i". If g Ell, then

<t;l ... t~" I fL *gx:1'" X~"> = <fLt;' ... t~" I gx:' '" x~">

. i . .

= <gl-"t~' ... tn" I x~' '" X~'>

and so

Finally, since

we have

where ft *.xi1 ... ~" is the associated sequence for (!I'(II), ..., .!l'(ln)).

12. THE RECURRENCE FORMULA

In this section we derive a useful recurrence formula for the associated
sequence of a delta set.

If Pi!' .... i" is the associated sequence for a delta set (ll, Jn) we define
the shift operators associated with Pi!' .... i" (or with (II , In)) as the set
of operators denoted by (f)t , ... , at), where each at is the continuous

1" ,

linear operator on R with

(i; + 1) Ci;
atJ,p"I" ... ,',. = p. t' " +1 t' .. c. ~1"'" j~l' j • j+l··· ..~n •

~j+l

THEOREM 14. The set of continuous linear operators (WI'"'' IVn) on R is
a set of shift operators if and only if the set of adjoints (wt, ... , w~) defined
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on A has the property that each wt is a continuous, everywhere defined deriva
tion of A and there exists some delta set (/1 ,...In) for which wtli = 8i ,1 •

Proof Suppose (WI"", wn) is the set of shift operators associated with
the delta set (/1 , .. In)' Then

* k k < k fk I(i1+1) Ci; )~t' 1.... n . ..=::= 1 ...... n .< jf1 f n Ipi1, ....i) f 1 n C. Pi1 i;+l .. ' .. 'n
1.;+1

= <kfk1 ···fk;-l '" fkn Ip. .>
j 1 j . n tl.···.ln

and so W*f"'l ···f"'n = k·fk1 "'f~,l .. ·fkn Since w· is continuous so is; 1 n 11 1 n' 1 ,

wJ and thus wf = a/of; is a continuous, everywhere defined derivation
on A. Also, it is clear that wtli = oi,j .

For the converse, suppose (wt, ... , w~) is a set of continuous, everywhere
defined derivations on A, and wtli = 0;.; for the delta set (/1 ,... In)' Then
jf Pi!" ....i

n
is the associated sequence for (!J. ,... In) we have

<f k1 ... fkn I w·p· . >= <k fk 1 ... fk;-l ... fk n Ip. . \
1 n J lI •• ··.in ij 1 j n 1-1.···. l n l

<
k k I (i; + 1) Ci; )

= f 1
1

... fnn Ci+1 Pi1..... i j +1. .... in
]

and, so by the spanning argument

(i; + 1) Ci;

W;Pi1..... in = C. Pi1..... i;+1 ..... i n
lj+l

and since W; is continuous, we conclude that (w; ,... , wn) is the set of shift
operators for (/1 ,...,1..).

The chain rule for these derivations is easily established.

PROPOSITION 10. !f(O, ,..• , Of) and (Oy ,..., Oy ) are sets ofshift operators,
1 11 1 n

then

n

OJ; = L (0i;gi) O:i .
i~l

Proof. This follows from the fact that O~ is a continuous derivation,
that any element of A can be written as a convergent sum in terms of the
form g~1 ... g~n, and that

..
(J,~gk = L «(Jf~gi) O:,gk .

i~l

We can now express one set of shift operators in terms of another.



374 STEVEN ROMAN

TmOREM 15. If (01 ,.", 01 ) and (Og , ..., Og) are sets of shift operators,
then 1 n 1 n

n

el; = L egle~gi)'
i~1

Proof If pER and h E A we have

n

= L <Og~h I (()I:gi) p)
i~1

n

= L <h I egl()l:gi) p)
i=1

and the result follows from the spanning argument.

COROLLARY 13 (Recurrence Formula). If (01 , ... , 01 ) and (Og '00" Oy )
1 n 1 n

are sets of shift operators and if(h ,... ,fn) has associated sequence Pi!' .... i" '

then

The most useful version of the Recurrence Formula is for Ck = k! for all
k ~ °and gi = ti for i = 1,... , n. Then 0t is multiplication by Xi and
we have '

COROLLARY 14 (Recurrence Formula). In the case Ck = k!, for all
k ~ O,lf(OI ,,,., BI ) is a set ofshift operators and ifCfI ,... ,fn) has associated

1 n

sequence Pi!' .... in ' then

where otilofj = O~ti .
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13. EXAMPLES AND ApPLICATIONS
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We will compute the associated and conjugate sequences for some classical
examples. We will restrict our attention only to the algebras A and R,
preferring to leave other examples to a forthcoming paper.

Most of the classical examples arise from the special case where Ck = k!
for all k ~ O. However, it should be noted that this is not the only important
case. In particular, the case Ck = I for all k ~ 0 leads to some very interesting
results, but we must postpone a discussion of these.

For the most part our examples consist of delta sets (11 ,... ,fn) in which

fj = 2;h(2;),

where .:li = :l'(fj) is the linear part of fj and where h = h(T) is a power
series in the variable T which has nonzero constant term. In this situation
we may greatly simplify the Transfer Formula.

First, let us recall that the sequence ril' ....1" was defined as the associated
sequence for the delta set (2'1'"'' 2'n)' Moreover, we saw that (since Ck = k!)

If we write

then

and

Let us consider the Transfer Formula in this setting. First we have
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and so

Also, since

we see that

Finally,

and
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n

8(h ,...J ..) = (det aj,i) IT (h(.!l';) + .!l';h'(.!l';)).
j~l

jj = .p,. + gj = Y;h(~),

I (k~t (h(~) + Z;h'(Z;))(Th - Tt; (Z;) r;;+k;
k;~O J'

= (h(Z;) + ffjh'(.!l';)) f (-lk~ ij) (h - 1)1>; (.!l';) r;l
hj~O J

where h-1- ij is a power series in T with nonzero constant term. We may
write this suggestively as

However, there is yet another useful form. It is easy to verify that if f is
any power series in T, then

f'(ffj) r/ = [f(.!l';) rj - rJ!(.!l';)] r/.
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Therefore, we have

[h(~) + ~h'(~)] h-1-i;(~) rJ;

= h-i;(!l}) ri; _ iF(!l}) h-1- i;(!l}) rij- 1

= h-i;(!l}) rJ; - (h-i;)' (~) rJ;-1

= h-i;(:tj) rJ; - [h-ii(~) rj - rjh-i;(~)] ';;-1

= rjh-i;('pj) r;i;-1.

We summarize our results in

TH'EOREM 16. Let (/1 ,... ,fn) be a delta set with

fj = ~h(~)
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for some power series h = h(T) with nonzero constant term and where
~ = !C'(fj) is the linear part ofjj. Then in the case Ck = k! for all k ~ 0,
the associated sequence Pi1 .....infor (/1 ,... ,fn) is given by

n

(1) Pi1.....in = IT (h(:tj) + ~h'(~)) h-1- i;(:tj) rj;,
j~1

n

(2) p. . = IT r.h-ij('p.) ri;-1
?l•...• 'ln :1 J)'

j=1

where

We remark that a similar result holds if (/1 ,... ,fn) is of the form

where hj is a power series in Twith nonzero constant term for eachj = 1,... , n.
We are now ready to begin our examples.

(1) The forward difference delta set is defined by



378 STEVEN ROMAN

To compute the associated sequence we use the Recurrence Formula.
We have

!£; = 10g(1 + fj)

and

where (bi,j) = (ai,j)-l. The Recurrence Formula then gives

= (b· oX + '" + b ·x) e-.fl?j'P' .t.] 1 n.] n ~1'" "~n •

Noticing that

e-.fl?irki ,,(-1) I ro I i
~ -l-'-.z;j rk
1;;>0 •

,,(-l)l~ (.) i-I= ~ -l-'- Uj,k I I ric
1;;>0 •

= (ric - l)i 0;.10

it is easy to see that

n

Pi1..... i n = IT rj(rj - 1) .. , (rj - ij + 1)
j~l

n

= IT (bi,jXi + .. ,+ bn,jXn)ii'
j~l

We call these the multivariate forward-difference polynomials.
The conjugate sequence to the forward-difference delta set IS easily

computed from the definition and the fact that

We obtain
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which for n = 1 and a;,i = O;.i is 11! times a Stirling number of the second
kind. If we write this expression as 11! .. ,1n! S(il , ... , in ; it ,...,in) we obtain

These are the multivariate exponential polynomials C[Ji
1

••••• ;n(x1 ,"', xn).

(2) The multivariate Abel polynomials are the associated polynomials for
the Abel delta set

In this case h(T) = eT and part (2) of Theorem 16 gives

Since

e-i ;.!l';':;-1 = L (-kIt (:l'j)k r:;-1
k~O •

( . )i'-1= rj - Ij J ,

we have

n

= n (bi.jX 1 + ... + bn.jxn)(bi.jXl + ... + bn,jxn - i j Y;-I.
j~1

The conjugate Abel polynomials are computed from the definition.
They are

i 1+"'+in

qi,.... ,i" = 2: 2:
u=O jl+,··+jn=U
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where

STEVEN ROMAN

<f~l ... f~n I X~l ... X~n> = L (0 a~::) (ilh11+"'+kt ... (inh,," "'lkn
n

kll+':'+knl~h ',1

(3) The multivariate Laguerre polynomials are the associated polynomials
for the Laguerre delta set

jj = ai,;tl + ... + an,;tn

aUtl + '" + an.;tn -

.!f;
.!f; - 1

In this case h(T) = (T - 1)-1, and part (2) of Theorem 16 gives

Since (~ - 1)i; r/ = erl.!l1;rr;r/ we obtain the multivariate version of the
classical Rodrigues formula:

n

Lil..... in(Xl , ... , x n) = n (bi,jxl + ... + bn.;xn)
;=1

X eb;,;Xl+oo'+bn,IX"(a;,ltl + ... + a;,ntn)i;

X e-(bl,;Xl+ .. ·+bn,;Xn)(bi,jXl + ... + bn,jXn)ii-l •

From part (1) of Theorem 16 we obtain

n

Li1,. .• ,in(Xl '00" X n) = (- 1)n n (.!f; - 1)i;-l rt;
;=1

i; (i; - 1) i;! k. k
= n L k. _ 1 n (-1) '(bi.;Xl + ... + bn.;xn) I.

1=1 kj=l 1 1
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